
  

 

Abstract— Sleep spindles are significant rhythmic transients 

present in the sleep electroencephalogram (EEG) of non-rapid 

eye movement (NREM) sleep. Automatic sleep spindle detection 

techniques are sought for the automation of sleep staging and 

the detailed study of sleep spindle patterns, of possible 

physiological significance. A deficiency of many of the available 

automatic detection techniques is their reliance on the 

amplitude level of the recorded EEG voltage values. In the 

present work, an automatic sleep spindle detection system that 

has been previously proposed, using a Multi-Layer Perceptron 

(MLP) Artificial Neural Network (ANN), was evaluated using a 

voltage amplitude normalization procedure, with the aim of 

making the performance of the ANN independent of the 

absolute voltage level of the individual subjects’ recordings. The 

application of the normalization procedure led to a reduction in 

the false positive rate (FPR) as well as in the sensitivity. When 

the ANN was trained on a combination of data from healthy 

subjects, the reduction of FPR was from 42.6% to 19%, while 

the sensitivity of the ANN was kept at acceptable levels, i.e., 

73.4% for the normalized procedure vs 84.6% for the non-

normalized procedure.  

I. INTRODUCTION 

Electroencephalography (EEG) is a basic tool used for 
investigating brain function during sleep. Sleep is composed 
of two major phases, repeating themselves a number of times 
during a normal night sleep period, non-rapid eye movement 
(NREM) sleep and rapid-eye-movement (REM) sleep. 
NREM sleep is in turn divided into stages 1 to 4, with each 
stage presenting varied characteristics of EEG waveforms, 
muscle activity and eye movement patterns [1,2]. Sleep 
spindles are important transient EEG waveforms appearing 
during the stages of NREM sleep. They are bursts of 
rhythmic EEG activity, with frequencies ranging from 11 to 
16 Hz, characterized by a progressively increasing, then 
gradually decreasing amplitude, and a duration usually in the 
range of 1-2 sec. The amplitude is mostly below 50 μV peak-
to-peak in an adult, although exceptions to both the 
amplitude and duration range are frequent [3,4]. Sleep 
spindles are a hallmark of stage 2 sleep and provide a major 
criterion for sleep staging [5].  

The brain processes that generate sleep spindles, as well 
as the functional significance of spindles are active topics of 
research [6,7]. Quantitative investigations of sleep spindles 
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have been used in the study of various pathological 
conditions such as affective disorders [8] and schizophrenia 
[9], including also the relation of spindles with cognitive 
mechanisms in psychotic patients [10], as well as in the study 
of dementia (e.g., Alzheimer’s disease - AD) [11-13], where 
it has been shown that sleep spindles are poorly formed, of 
lower amplitude, shorter duration and much less numerous 
than in normal aging [11, 12].  

The need for automatic sleep spindle detection has been 
closely related to the interest in research on sleep spindles, 
since the visual scoring of whole-night sleep EEG recordings 
for detecting spindles is a laborious and time-consuming 
task, prone to a high degree of intra- and inter-rater 
variability [14]. The task of automatic sleep spindle 
detection has proven to be a demanding one in the field of 
pattern recognition. This is at least in part due to the 
presence of low-amplitude spindles, the superimposition of 
much stronger slow-wave activity like delta rhythm 
waveforms, and the large inter-subject variability of spindle 
characteristics [1,4]. Additional difficulties are present in the 
automatic detection task due to the lack of a quantitatively 
strict definition of spindles as well as of a reliable “gold” 
standard, apart from visual inspection, for benchmarking the 
performance of the proposed systems [4,14,15]. In the 
pursuit of the automatic sleep spindle detection task, an 
extended variety of techniques have been proposed [15], 
probably due, at least in part, to the problems exposed 
above. Various pattern recognition techniques have been 
applied including Artificial Neural Networks (ANN) 
[14,16,17], Matching Pursuit (MP) and wavelet techniques 
[18-21], frequency and amplitude analysis [22-25], fuzzy 
detection [15,23], Support-Vector Machine (SVM) 
classifiers [16,26], switching linear Gaussian state-space 
models [27] and Bayesian algorithms [28]. 

Among the various problems that inter-subject variability 
presents to automatic detection systems, amplitude 
variability is a major cause for concern, especially for 
systems using amplitude features or general waveform 
morphological characteristics related to amplitude for 
producing the “template” with which subsequent novel 
recordings will be processed [14,23]. In previous work of 
our group [14,29], band-pass filtered EEG was used as input 
to a feed-forward Multi-Layer Perceptron (MLP) ANN. By 
training the network on characteristic examples of EEG 
segments with and without sleep spindles, acceptable 
classification results were provided, bypassing the feature 
selection stage. In the present work, we attempt to alleviate 
the problem of sleep spindle amplitude influence on the 
detection process, using a normalization procedure both in 
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the training phase and in the testing phase of the ANN 
system. The aim of the normalization procedure was to 
implement system training and testing based not on 
amplitude values which might vary considerably among 
subjects, but on normalized amplitude values, i.e., values 
whose range is from -1 to 1.   

II. MATERIALS AND METHODS 

The subject sleep recordings (polysomnograms) in the 
present study were provided by the Sleep Study Unit of the 
1

st
 Psychiatric Clinic of the University of Athens Medical 

School, at the Eginition Hospital in Athens. The 
polysomnograms were recorded with the 
Micromed/BrainQuick system. The set of recordings used, 
previously described in [14, 29], consisted of a whole-night 
sleep recording from 4 healthy control subjects (3 males of 
26 years age each, denoted S1,S2 and S3, and 1 female of 27 
years age, denoted S4 in the following). The night sleep 
record of each subject was divided into three consecutive 
parts of equal duration (thirds of the night). In each part, the 
longest stage 2 sleep period was selected, provided that it 
lasted for at least 10 minutes. Then a time frame (TF), 
starting 5 min after the start of stage 2 and lasting 5 min and 
5 sec, was selected for visual analysis. This resulted in 3 time 
frames for each subject, TFSij i=1,…,4, j=1,2,3. From those 
TFs, electrode Cz recordings from subject S3 and S4 
(sampling rate 256 Hz) and electrode C3 recordings 
(sampling rate 512 Hz) from subjects S1 and S2 were 
analyzed for sleep spindles, based on visual detection criteria 
described in [14]. The recordings of S1, S2 and S3 were 
analyzed by one experienced polysomnographer, while the 
recordings of S4 were analyzed with a consensus-detection 
methodology described in detail in [14].  

After visual sleep spindle detection, the sampled EEG 
signal was band-pass filtered using a 128-coefficient FIR 
filter with 3dB cutoff frequencies set at 10.5 and 16 Hz. 
Then, the maximum value of the absolute voltage values of 
each filtered TF, max|TFSij|, was computed and it was used to 
normalize the sampled data. The MLP was trained using the 
methodology described in [14]. Four normalized training sets 
(NTSk, k=1,…,4) were used, producing, respectively, four 
sets of biases and weights (NTWk, k=1,…,4). NTS1 
consisted of 2 sleep spindles and of 2 EEG segments not 
containing spindles, from each of TFS11,TFS12, TFS13. The 
filtered EEG that was used in NTS1 was divided by the 
maximum of values max|TFS1j|, j=1,2,3. The same procedure 
was applied for producing NTW2 and NTW3, based on 
filtered EEG from subjects S2 and S3, respectively. For 
producing NTW4, NTS4 consisted of the merging of NTS1, 
NTS2 and NTS3. Additionally, four non-normalized training 
sets (TSk, k=1,…,4) were used, producing, respectively, four 
non-normalized sets of biases and weights (TWk, k=1,…,4). 
Therefore, the total amount of training inputs (EEG 
segments) were 12, when training was based on data from 
one subject (either S1, S2, or S3), and 36 when training was 
based on data from all 3 subjects. The procedure used for 
producing the non-normalized training sets and the 
corresponding sets of biases and weights was the same as for 

the normalized ones, except that no division of the filtered 
EEG segments took place.  

Performance evaluation of the ANN was accomplished 
using the output value O(t) of the ANN, 0≤O(t)≤1, t 
corresponding to the time samples of the visually scored 
EEG recordings. Spindles of S4 were detected in TFS4j 
j=1,2,3, using TWk and NTWk, k=1,…,4. For each NTWk, 
the band-pass filtered EEG segments TFS41,TFS42 and TFS43 

were divided by max|TFS41|, max|TFS42| and max|TFS43|, 
respectively, producing normalized performance evaluation 
sets PENk/1, PENk/2 and PENk/3, k=1,…,4, corresponding 
to each of the training sets. In future applications, the 
normalization dividing value for a given recording will be 
extracted from the data available from that recording and 
will be the maximum of the absolute values of the voltages 
of the recording. Non-normalized performance evaluation 
sets, PEk/1, PEk/2 and PEk/3, k=1,…,4, were also produced 
for the corresponding TWk, k=1,…,4, where no 
normalization of the band-pass filtered EEG segments 
TFS41,TFS42 and TFS43 took place.  

The O(t) curve was divided into parts that had value 
greater or lower than a threshold value VT. The parts that had 
a value greater than VT were denoted as “peaks”. We used 
two criteria for checking whether a sleep spindle presence 
was indicated by the ANN output. According to the “soft” 
criterion (SC), the ANN provided a spindle indication (SI) 
when a peak existed in the O(t) curve. According to the 
“hard” criterion (HC), a spindle presence was indicated only 
when the peak duration was greater than PD sec. The SIs 
were automatically computed by the system. SIs that 
corresponded to visually detected spindles were termed 
“hits”, while the other SIs were termed false positives (fps). 
The sensitivity of the network was computed as the percent 
ratio of the hits to the number of visually detected spindles 
and the false positive rate (FPR) as the percent ratio of the 
fps to the number of SIs given by the ANN. 

III. RESULTS 

The absolute amplitude values used in the normalization 
procedure were max(max|TFS11|, max|TFS12|, max|TFS13|)=  
29.3μV, max(max|TFS21|,max|TFS22|,max|TFS23|)= 26.1μV, 
max(max|TFS31|,max|TFS32|,max|TFS33|)= 24.1μV, max|TFS41| 
= 56.7μV, max|TFS42|= 72μV, max|TFS43|= 31.7μV. The 
consensus-based visual detection process for the time 
frames, used for testing the performance of the ANN, 
indicated 48, 62 and 72 spindles for TFS41, TFS42 and TFS43, 
respectively, resulting in a total amount of 182 spindles 
detected in 915 sec of EEG recording. 

The performance of the ANN was investigated for VT 
values 0.5, 0.6, 0.7, 0.8 and 0.9 for the SC (soft criterion), 
and for PD=0.3 sec for the HC (hard criterion).  Table I 
shows the mean (across thirds of the night) sensitivity and 
mean FPR values, for the normalized case (mean of 
performance evaluation sets PEN4/1, PEN4/2, PEN4/3) and 
for the non-normalized case (mean of performance 
evaluation sets PE4/1, PE4/2, PE4/3), for the various 
threshold values VT and criteria types used.  
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Table II shows the mean and standard deviation of the 
sensitivity and FPR values, across threshold values VT and 
criteria types, for the normalized performance evaluation sets  

PEN4/1,PEN4/2,PEN4/3 and the non-normalized sets 
PE4/1,PE4/2,PE4/3, as well as the respective averages and 
standard deviations across thirds of the night.  

Table III shows the mean and standard deviation (across 
thirds of the night, threshold values VT and criteria types) of 
the sensitivity and FPR values when the ANN was trained 
based on data from subjects S1, S2 and S3 separately, i.e., 
using NTWk, k=1,…,3 for the normalized case, and TWk, 
k=1,…,3 for the non-normalized case.  

Using the sensitivity values, averaged across thirds of the 
night, threshold values and criteria types, when the ANN was 
trained based on data from subjects S1, S2 and S3, 
separately and on merged data, there was a statistically 
significant difference between sensitivity values for the 
normalized and the non-normalized procedure, as attested by 
repeated-measures ANOVA, with the procedure being the 
between-subjects factor, with two levels (df=1, F=9.42, 
p=0.22). There was no statistically significant differentiation 
when the between-subjects factor was the training set used. 
Comparable results were obtained for the false positive rate 
values, where repeated-measures ANOVA, with the 
procedure being the between-subjects factor, showed 
significant differentiation (df=1, F=44.196, p=0.001). No 

significant differentiation existed when the between-subjects 
factor was the training set used.  

IV. DISCUSSION 

As can be seen by inspecting Tables II and III, when the 
ANN was used for detecting sleep spindles without the 
application of the normalization procedure, the average 
(across thirds of the night, thresholds and criteria types) FPR 
was not less than 39.8%. The application of the 
normalization procedure, by dividing the filtered EEG data 
of each third of the night to be inputted to the ANN by the 
maximum of the absolute voltage values of that third, and 
using weights and biases produced by normalized training, 
resulted in a notable reduction of FPR, with FPR ranging 
between 26.6% and 15%, for the various training sets used. 
This could be due to the fact that the filtered EEG recordings 
of subject S4, whose data were used for testing the ANN, 
had higher voltage values than the respective values of the 
filtered EEG data of subjects S1, S2 and S3, whose data 
were used for training the ANN. Therefore, it could be 
expected that, when the ANN was trained on non-normalized 
data from S1, S2 or S3, the higher filtered EEG voltage 
values that the ANN would encounter when detecting sleep 
spindles in subject S4 would result in a high rate of false 
positives. Apparently, the normalization procedure tended to 
mitigate this.  

The performance of the ANN concerning sensitivity 
values, when the normalization procedure was applied, 
seemed to deteriorate for the 2

nd
 third of the night, for which 

the maximum of the absolute voltage values of the testing 
record was highest (72μV), compared to the respective 
maximum values for the 1

st
 (56.7μV) and 3

rd
 (31.7μV) third 

of the night. This can be seen by inspecting Table II. This 
trend was also present when the ANN was trained based on 
data from subjects S1, S2 and S3 separately (not shown in 
the paper). It could be hypothesized that, in the case of the 
2

nd
 third of the night in the testing data, the (comparatively 

high) maximum value used for the normalization did not 

  

TABLE I MEAN SENSITIVITY (SE) AND MEAN FALSE POSITIVE RATE (FPR) VALUES, ACROSS THIRDS OF THE NIGHT, WHEN THE ANN WAS TRAINED 

BASED ON MERGED DATA FROM SUBJECTS S1, S2 AND S3. 

  Soft criterion (SC) Hard criterion (HC), PD=0.3 sec 

 VT 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 

Normalization 

procedure applied 

SE 78,4 77,8 77,3 75,7 68,8 75,2 74,0 73,3 68,5 65,4 

FPR 21,6 21,1 19,5 19,8 19,8 19,7 18,6 17,9 17,0 15,1 

            

Normalization 

procedure not 

applied 

SE 83.8 85.2 85.9 85.0 84.1 83.8 84.8 85.0 84.5 83.6 

FPR 47.3 46.0 44.9 43.3 42.1 43.9 42.2 40.8 38.8 37.0 

TABLE II MEAN (STANDARD DEVIATION) OF SENSITIVITY (SE) AND FALSE POSITIVE RATE  (FPR) , FOR EACH THIRD OF THE NIGHT AND ACROSS 

THIRDS OF THE NIGHT, WHEN THE ANN WAS TRAINED BASED ON MERGED DATA FROM SUBJECTS S1, S2 AND S3.  

 Normalization procedure applied Normalization procedure not applied 

 1st third 2nd third 3rd third Across thirds 1st third 2nd third 3rd third Across thirds 

SE 80.4 (5.8) 53.0 (6.3) 86.9 (1.6) 73.4 (15.7) 84.1 (1.6) 82.4 (0.8) 87.2 (1.4) 84.6 (2.4) 

FPR 28.1 (3) 3.8 (1.5) 25.1 (2.4) 19 (11.3) 55.1 (2) 43.6 (3.3) 29.1 (4.5) 42.6 (11.3) 

 

 

TABLE III MEAN (STANDARD DEVIATION) OF SENSITIVITY (SE) AND 

FALSE POSITIVE RATE (FPR), WHEN THE ANN WAS 

TRAINED BASED ON DATA FROM SUBJECTS S1,S2 AND S3, 
SEPARATELY. 

Subjects  
Normalization 

applied 

No normalization 

applied 

1 
SE 78.3 (10.3) 83.6 (3) 

FPR 26.6 (13.3) 48 (11.8) 

2 
SE 65.7 (19.3) 85 (2.2) 

FPR 15 (8.5) 43.7 (11) 

3 
SE 63.7 (16.7) 84.5 (2.1) 

FPR 15.9 (9.7) 39.8 (11.9) 
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represent adequately an “average” value for the envelope of 
the spindle activity present in the testing data. Therefore, the 
normalization could have resulted in the ANN having to 
cope with excessively low-value normalized data, leading to 
misses. 

The main motivation for investigating the application of 
the normalization procedure studied in this work was the 
observation that various automatic sleep spindle detection 
systems rely on the amplitude level of the sleep spindle 
activity. Taking into consideration the preliminary findings 
presented in this work, we can conclude that amplitude 
normalization might alleviate, at least in part, amplitude 
sensitivity in system performance. Nevertheless, the 
definition of the normalization dividing factor seems to be 
important, and further research on this matter is needed. In 
addition, the normalization procedure should be applied to a 
larger number of subjects and recordings, both for training 
and testing purposes, in order to fully assess its usefulness. 
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