
  

Abstract— Identifying the need for interventions during 

hemorrhage is complicated due to physiological compensation 

mechanisms that can stabilize vital signs until a significant 

amount of blood loss. Physiological systems providing 

compensation during hemorrhage affect the arterial blood 

pressure waveform through changes in dynamics and 

waveform morphology. We investigated the use of Markov 

chain analysis of the arterial blood pressure waveform to 

monitor physiological systems changes during hemorrhage. 

Continuous arterial blood pressure recordings were made on 

anesthetized swine (N=7) during a 5 min baseline period and 

during a slow hemorrhage (10 ml/kg over 30 min). Markov 

chain analysis was applied to 20 sec arterial blood pressure 

waveform segments with a sliding window. 20 ranges of arterial 

blood pressure were defined as states and empirical transition 

probability matrices were determined for each 20 sec segment. 

The mixing rate (2nd largest eigenvalue of the transition 

probability matrix) was determined for all segments. A change 

in the mixing rate from baseline estimates was identified during 

hemorrhage for each animal (median time of 13 min, ~10% 

estimated blood volume, with minimum and maximum times of 

2 and 33 min, respectively). The mixing rate was found to have 

an inverse correlation with shock index for all 7 animals 

(median correlation coefficient of -0.95 with minimum and 

maximum of -0.98 and -0.58, respectively). The Markov chain 

mixing rate of arterial blood pressure recordings is a novel 

potential biomarker for monitoring and understanding 

physiological systems during hemorrhage. 
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I. INTRODUCTION 

Hemorrhage is a medical emergency frequently 
encountered by clinicians in situations as diverse as 
emergency and operating rooms, intensive care units or mass 
casualty incidents. A significant amount of blood loss due to 
hemorrhage can cause hemodynamic instability, inadequate 
tissue perfusion, hemorrhagic shock, and, if left untreated, 
eventual death [1]. Hemorrhage is the cause of 40% of deaths 
after a traumatic injury in the United States [2]. One of the 
limitations to treating hemorrhage is that vital signs can 
appear normal until a significant amount of blood has been 
lost. This delay in vital sign changes is due to the action of 
the sympathetic and parasympathetic control of blood 
pressure, which can effectively compensate until blood loss is 
significant. There is therefore much interest and value in 
identifying early and sensitive biomarkers of hemorrhage. 

Heart rate variability is one method suggested in the 
literature to identify hemodynamic instability due to 
hemorrhage [3]. Although it has been shown that aggregate 
group mean values of heart rate variability are correlated with 
stroke volume, heart rate variability is less reliable when 
tracking individual reductions in central volume during 
progressive lower body negative pressure or simulated 
hemorrhage [4]. It has been suggested that reductions in 
vagal activity assessed with heart rate variability or 
baroreflex sequences may represent identifiable early 
markers of hemorrhage [5]. Loss of blood volume triggers 
withdrawal of the parasympathetic nervous system and 
activation of the sympathetic nervous system, which tries to 
compensate for the drop in blood pressure. As a result, during 
the early stages of hemorrhage the mean arterial pressure 
may remain constant and when a significant change in blood 
pressure is eventually identified, the available medical 
interventions may be limited.  Markov chain methods may 
describe changes in the compensating autonomic system 
dynamics related to hemodynamic instability prior to changes 
in traditional vital signs, potentially providing an early 
indicator of hemorrhage. 

A Markov chain is defined as a system with different 
states where the transition probability from one state to the 
next depends only on the current state, the Markov 
assumption [5].  A discrete Markov chain can be described 
by a countable number of states (S) and a transition 
probability matrix (P) which describes the evolution of a 
sample path from one state to the other. Regular Markov 
chains have a limit distribution or steady state. The mixing 
rate of a Markov chain represents how fast the system is 
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approaching the steady state. Empirical Markov chains can 
be constructed from sample time series data or first 
principles. Eigenvalues of Markov chains capture 
information about changes in system dynamics, which cannot 
otherwise be captured with nonlinear methods such as 
Poincare plots [6].  Properties of the transition matrix 
eigenvalues such as the presence of complex numbers, 
information content of the limit distribution, and the mixing 
rate (i.e. the second largest eigenvalue) can be examined to 
understand the underlying system.  

The change in dynamics of the physiological systems that 
are represented in the arterial blood pressure (ABP) 
waveform as the body attempts to compensate for blood loss 
may be captured by the eigenvalues of the Markov chain. An 
empirical Markov chain can be constructed from ABP 
recordings. Each state of the Markov chain can be defined as 
a blood pressure range (e.g. 80 – 85 mmHg), and the steady 
state then represents the probability that the signal is at any 
one range. As the system dynamics and waveform 
morphology change, the system will approach steady state 
faster or slower and this can be observed through the mixing 
rate.   

Here, we present a method to monitor the mixing rate of 
ABP waveforms.  We hypothesized that a detectable change 
in the Markov chain mixing rate will occur prior to noticeable 
changes in traditional vital signs in an anesthetized swine 
model undergoing hemorrhage.  

II. METHODS 

A. Experimental Protocol  

Experiments were performed at University of Texas 
Medical Branch at Galveston. The protocol was approved by 
the University of Texas Medical Branch Institutional Animal 
Care and Use Committee (IACUC). Immature swine (N=7, 
female, 37.1 ± 15.1 kg (mean ± SD)) were propofol 
anesthetized and instrumented with bilateral catheters in 
femoral arteries and veins. An arterial pressure catheter was 
advanced 40 cm into the artery for proximal arterial readings. 
The carotid artery was catheterized for hemorrhages, a Foley 
catheter was inserted into the bladder, and a splenectomy was 
performed. The animal was given a period of at least 30 
minutes to recover upon the completion of surgery before 
data collection.  

Data was collected during a continuous hemorrhage of 10 
ml/kg over 30 min. Physiological monitoring began at least 5 
min prior to the initiation of the hemorrhage and occurred 
throughout the experiment. ABP was recorded using a 
standard clinical pressure transducer at a sampling rate of 
1,000 Hz.  

B. Signal Processing 

Heart rate and beat-by-beat blood pressures (systolic, 
diastolic, mean) were calculated from the ABP waveform 
using the publicly available code by Zong et al. [7] [8]. This 
algorithm uses a windowed and weighted slope sum function 
to identify ABP waveform features for each beat. ABP 
waveform data were down sampled to 125 Hz prior to feature 
identification. Shock index was calculated by dividing heart 
rate with systolic blood pressure [9]. 

C. Markov Chain Analysis 

For computational efficiency, ABP waveforms were 
down sampled to 100 Hz for the Markov chain analysis. A 
moving average window (length 2000 samples) was 
subtracted from the ABP waveform to remove the effect of a 
change in the mean arterial pressure from the Markov model. 

An empirical Markov chain was created from the ABP 
waveform by segmenting the range of pressure (minimum to 
maximum pressure recorded for each segment) over a 
specified window into a fixed number of ‘states’, each 
covering an equal range of blood pressure. Fig. 1a shows a 
sample ABP waveform filtered using a moving average filter 
with the same length for two seconds with three states for 
illustration. The range of blood pressure for each state is 
computed by dividing the difference of the maximum to the 
minimum of the blood pressure waveform by three. The 
empirical transition probability matrix represents the 
probability that blood pressure will enter any state given only 
the state that it is currently in. The entry at the i

th 
row and j

th
 

column represents the probability with which blood pressure 
would change from the i

th
 to j

th 
state. To compute the 

transition probability matrix, the state is defined for each 

sample by identifying the blood pressure range the sample 
lies in. Then, the matrix is filled by computing the number of 
instances a sample moves from state i (Si) to state j (Sj) over 
all samples. Finally, the matrix is normalized by dividing 
each row with the sum of the row to have a probability 
distribution.   These probabilities are shown by the arrow 
labels in the Markov chain in Fig. 1b which corresponds to 
the example ABP waveform in Fig. 1a. 

The eigenvalues and the left eigenvectors are determined 
from the transpose of the transition probability matrix. For a 
regular Markov chain, all eigenvalues have magnitude less 
than or equal to 1. 1 is always an eigenvalue, and the 
eigenvalue with the second largest magnitude is defined as 
the mixing rate.  

We tested a range of window sizes (5 to 30 seconds) and 
number of states (5 to 30) using the FDA Scientific 
Computing Laboratory Blue Meadow cluster with Octave 
parallel computing to identify the appropriate settings for 
observing changes in the mixing rate of the ABP waveform. 
The final window length and number of states used for the 

(a)  (b) 

    
Figure 1.  (a) An example of a 2 sec recording (sampled at 100 Hz) of 

an arterial pressure waveform with 3 states. (b) Example Markov chain 

and its transition probabilities for the three states from the arterial 
blood pressure wavefrom in (a). 
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results reported here were selected as 20 sec and 20, 
respectively. 

D. Correlation coefficient   

Pearson correlation coefficients were determined between 

the mixing rate and each vital sign (heart rate, pulse pressure 

and systolic blood pressure). The mixing rate (determined at 

100 Hz of ABP) was first interpolated using a cubic spline to 

match the sampling rate of the vital signs (determined at 125 

Hz of ABP) that were computed using the Physionet code 

and all signals were then smoothed using a moving average 

filter (100 samples window) before computing the correlation 

coefficients. 

E. Detection of change in the mixing rate 

A probabilistic approach was applied to detect a change 
in the mixing rate during hemorrhage. The distribution during 
the 5 min baseline period was considered and the 95% 
confidence interval was determined. A change in the mixing 
rate was considered at the first instance from the start of 
hemorrhage when 4 mixing rates (selected from a twelve 
point window, each of them three points apart) were outside 
of the 95% confidence interval in the same direction. 

III. RESULTS 

Fig. 2 shows the vital signs and the mixing rate for each 
animal starting from 5 min before the start of hemorrhage 
through the 30 min hemorrhage. Hemorrhage was initiated at 
the red vertical line (0 min). There was significant inter-
animal variability in the heart rate during the baseline period. 
The heart rate exhibited a heterogeneous response to 
hemorrhage between animals. Heart rate was almost constant 
in 4 animals while in 3 a dramatic rise in heart rate occurred. 
Differences in the heart rate response to hemorrhage between 
animals do not appear to be related to the baseline heart rate, 
Fig. 2. Most animals have a steady decline in blood pressure 
and pulse pressure. Shock index, which captures the changes 

in both heart rate and blood pressure rises for all animals. The 
mixing rate decreases during hemorrhage.  

The correlation coefficients between the mixing rate and 
the vital signs quantify the relationship between the two, 
Table I. Overall, the mixing rate was inversely correlated 
with heart rate and positively correlated with blood pressure 
and pulse pressure, but these were not consistent across all 
animals. The mixing rate and shock index showed a strong 
inverse correlation for all animals. 

TABLE I.  CORRELATION COEFFICIENTS BETWEEN MIXING RATE AND 

VITAL SIGNS DURING HEMORRHAGE 

Animal 
Heart 

Rate 

Systolic 

Blood 

Pressure 

Pulse 

Pressure  

Shock 

Index 

A -0.10  0.47  0.56 -0.59 

B -0.99  0.94  0.98 -0.93 

C -0.09  0.96  0.93 -0.95 

D -0.99  0.98  0.93 -0.98 

E  0.36  0.78 -0.31 - 0.82 

F -0.76  0.97  0.96 -0.98 

G -0.98 -0.66 -0.95 - 0.97 

 Group Statistics 

Median -0.76 0.94 0.93 -0.95 

Min -0.99 -0.66 -0.95 -0.98 

Max 0.36 0.98 0.98 -0.59 

 

The first time that a statistically significant change in the 
mixing rate was identified for each animal is presented in 
Table II. There was significant variation between swine in the 
time that a change was detected, ranging from 2 – 33 min. 
The change in systolic blood pressure, heart rate, pulse 
pressure, and the shock index at the time a change in the 
mixing rate was detected is also presented in Table II. We see 
that the mixing rate change is identified for most swine prior 
to a significant change in the heart rate (median change of 5 

 
Figure 2.  The vital signs (heart rate, systolic blood pressure, and shock index) for each animal along with the mixing rate during hemorrhage. Each 

color represents a different animal.The red vertical lines in each subplot indicate the start of hemorrhage.  
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BPM), pulse pressure (median change of 3 mmHg) or even 
shock index (median change of 0.19 BPM/mmHg). At the 
time a change in the mixing rate was detected, the systolic 
blood pressure had dropped by a median of 19 mmHg. 

TABLE II. TIMING OF SIGNIFICANT CHANGE IN MIXING RATE AND 

CORRESPONDING VITAL SIGN CHANGES 

Animal 

Time till 

Mixing Rate 

change 

detected 

(min) 

Δ from Baseline  

SBP 

(mmHg) 

HR 

(BPM) 

PP 

(mmHg) 

SI 

(BPM/

mmHg) 

A 25 -38    0 -11  0.37 
B  2    -7    5    -3  0.07 

C  7 -23    6    -7  0.35 

D 13 -17 21  -13  0.33 
E 17 -19   -2      1  0.19 

F 33 -19    4    10  0.14 

G 12   -1    6     -2  0.04 

 Group Statistics 

Median 13 -19 5 -3 0.19 

Min 2 -38 -2 -13 0.04 

Max 33 -1 21 1 37 
a. Time from the start of hemorrhage that a change was detected in the Mixing Rate 

using the approach outlined in II.E. 

b. SBP: systolic blood pressure, HR: heart rate, PP: pulse pressure, SI: shock index 

IV. DISCUSSION 

 In an anesthetized pig model, the Markov chain mixing 
rate of the ABP waveform is strongly correlated with the vital 
signs. It has a correlation greater than 0.5 with systolic blood 
pressure (5 out of 7 animals) and inverse correlation greater 
than 0.5 with heart rate (4 out of 7 animals) and shock index 
(7 out of 7 animals).  

The relationship between the mixing rate and the shock 
index indicates that this new variable might be an indicator of 
impending hemodynamic imbalance. Shock index is widely 
used in clinical scenarios for identifying patients that need 
immediate care. It has been shown that patients with an 
increasing or high shock index have a higher mortality 
likelihood [10].  The decreasing mixing rate may provide 
further information about the hemodynamic status of a 
patient. The shock index is computed from mean vital signs 
whereas the mixing rate is derived from the 
dynamics/waveform morphology. As a result, it is not 
necessary that they provide the same information. The 
resulting high correlation suggests that the Markov chain 
mixing rate is capturing changes in the system dynamics or 
waveform morphology that occur due to the same 
physiological system changes that affect the mean heart rate 
and/or blood pressure. 

A decreasing mixing rate indicates one special kind of 
hemodynamic imbalance that occurs due to hemorrhage. 
Eigenvalues of Markov chains have previously been shown 
to be identifiers of changes in system dynamics [6]. The 
construction of the Markov chain from time series data 
indicates that a change in waveform morphology or a change 
in system dynamics might cause a decreasing mixing rate. 
ABP waveform morphology has been shown to change 
during central hypovolemia [11]. In the present study, we did 
not determine if the effects of dynamic or morphological 
changes in the ABP waveform affect the mixing rate. We 
suspect that both contribute to the observed decrease in the 
mixing rate during hemorrhage. To identify if the changes in 

mixing rate are due to a specific change in waveform 
morphology, a comparative study of the timing of the 
changes in the ABP morphology and the timing of the change 
in mixing rate is needed.  

The baseline heart rate and systolic blood pressure 
presented significant inter-animal variability. The source of 
the baseline inter-animal variability is unclear as all animals 
were prepared using the same procedure. The inverse 
correlation between the mixing rate and shock index occurred 
in all animals regardless of the baseline vital signs and 
response to hemorrhage. 

The mixing rate change could be observed for a specific 
number of states (20) and specific window size (20 seconds). 
This suggests that the waveform morphology or system 
dynamics changes can be captured by this method with 20 
sec waveform segments. This might be useful to understand 
the utility and the limitation of this method to identify 
hemorrhage or predicting impending hemodynamic 
imbalance. Further work is needed to determine the utility of 
the mixing rate in hemodynamic monitoring. 
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