
Assessing instantaneous energy in the EEG: a non-negative,
frequency-weighted energy operator

John M. O’ Toole1, Andriy Temko1, and Nathan Stevenson1

Abstract—Signal processing measures of instanta-
neous energy typically include only amplitude infor-
mation. But measures that include both amplitude
and frequency do better at assessing the energy re-
quired by the system to generate the signal, making
them more sensitive measures to include in electroen-
cephalogram (EEG) analysis. The Teager–Kaiser op-
erator is a frequency-weighted measure that is fre-
quently used in EEG analysis, although the operator
is poorly defined in terms of common signal process-
ing concepts. We propose an alternative frequency-
weighted energy measure that uses the envelope of
the derivative of the signal. This simple envelope–
derivative operator has the advantage of being non-
negative, which when applied to a detection applica-
tion in newborn EEG improves performance over the
Teager–Kaiser operator: without post-processing fil-
ters, area-under the receiver-operating characteristic
curve (AUC) is 0.57 for the Teager–Kaiser operator
and 0.80 for the envelope–derivative operator. The
envelope–derivative operator also satisfies important
properties, similar to the Teager–Kaiser operator,
such as tracking instantaneous amplitude and fre-
quency.

I. INTRODUCTION
Energy is a difficult term to define in a signal process-

ing context. The signal processing definition differs from
the definition used in physics, which is a measure of work
done (or work that can be done) in a system, because
we often don’t know or don’t have access to the system
generating the signal. For example, the signal processing
definition assesses amplitude only and assigns the same
value to two unit-amplitude signals, one at 1 Hz and the
other at 1 000 Hz, even though the energy (work done)
to generate these signals can differ.

Addressing this inadequacy, Kaiser proposed an en-
ergy measure, based on previous unpublished work by
Teager, that includes not only the amplitude but also the
frequency of the signal [1]. Using this Teager–Kaiser defi-
nition, the unit-amplitude signals at different frequencies
show different energy. This definition, often referred to
as the nonlinear-energy operator, also differs from the
classical energy measure because it is an instantaneous
measure; that is, it is a function of time and can track
changes in signal—and therefore system—energy.
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This Teager–Kaiser measure has been applied in many
areas of biomedical signal processing, including elec-
troencephalogram (EEG) analysis [2], [3]. A limitation of
this Teager–Kaiser operator is interpretation: the mea-
sure is the output of a nonlinear system that includes
a second-order differential equation. And in most EEG
applications, there is significant post-processing of the
operator which casts some doubt on the applicability of
this measure. We propose to study the Teager–Kaiser
operator from a signal processing prospective and test
our conclusions on a data set of EEG recorded from
newborn infants.

II. FREQUENCY-WEIGHTED ENERGY
Kaiser proposed a measure to assess the instantaneous

energy of the signal that incorporates both the ampli-
tude and frequency of the signal [1]. The measure, for
continuous-time signal x(t), is defined as a second-order
differential equation [4]

Ψ[x(t)] = ẋ2(t)− x(t)ẍ(t) (1)

using the notation ẋ(t) = dx(t)/dt and ẍ(t) =
d2x(t)/dt2. For signal x(t) = A cos(ω0t + φ), Ψ[x(t)] =
A2ω2

0 , a frequency-weighted energy measure which Kaiser
relates to the physical energy (work done) in generating
simple harmonic motion in a mechanical system [1], [4].

Typical signal processing measures of instantaneous
energy are the amplitude square of the signal, that is
|x(t)|2, or the envelope of the signal,

S[x(t)] = |x(t) + jH[x(t)]|2 (2)

where H[.] is the Hilbert transform. The envelope
quantifies energy in terms of amplitude, for example
S[A cos(ω0t+φ)] = A2, and is independent of frequency.

A. Proposed Energy Measure
Frequency information can be included in the envelope

measure from (2) by first applying a weighting filter,
with frequency response |H(ω)|2 = ω2, to the signal.
Maintaining similarity with the Teager–Kaiser operator,
we select the derivative function as the filter, using the
property that the Fourier transform of ẋ(t) is jωX(ω),
where X(ω) is the Fourier transform of x(t). We thus
define the operator as

Γ[x(t)] = |ẋ(t) + jH[ẋ(t)]|2 = ẋ2(t) +H [ẋ(t)]2 (3)

And importantly,

Γ[A cos(ω0t+ φ)] = A2ω2
0
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This proposed measure is simply the combination of
filtering, to weight higher-frequency components, with
the time-varying envelope of the signal. We refer to this
measure as the envelope–derivative operator.
Although the Teager–Kaiser and the proposed oper-

ators are very similar, and the first terms of (1) and
(3) are equal, they do differ in their seconds terms. The
difference is best highlighted in the frequency domain, as

−F {x(t)ẍ(t)} = ω2X(ω) ∗X(ω)

F
{
H [ẋ(t)]2

}
= |ω|X(ω) ∗ |ω|X(ω)

where ∗ represents the convolution operation and using
the identity F {H[x(t)]} = −j sgn(ω)X(ω).

B. Properties
Although the two operators differ they have similar

properties. The following presents a brief outline of
proofs of the properties presented by Kaiser [1] for the
proposed envelope–derivative operator. First, as men-
tioned previously, for x(t) = A cos(ω0t+ φ),

Γ[x(t)] = A2ω2
0
[
sin2(ω0t+ φ) + cos2(ω0t+ φ)

]
= A2ω2

0

as ẋ(t) = −Aω0 sin(ω0t+φ) and H[ẋ(t)] = Aω cos(ω0t+
φ).

For amplitude-modulated signal x(t) = Aert cos(ω0t+
φ), where there is no spectral overlap between ert and
cos(ω0t+ φ), then

Γ[x(t)] = A2e2rtr2 [cos2(ω0t+ φ) + sin2(ω0t+ φ)
]

+A2e2rtω2 [cos2(ω0t+ φ) + sin2(ω0t+ φ)
]

= A2e2rt(ω2 + r2)

as ẋ(t) = Aert[r cos(ω0t + φ) − ω sin(ω0t + φ)] and
H[ẋ(t)] = Aert[r sin(ω0t + φ) + ω cos(ω0t + φ)]. The
operator therefore tracks the time-varying amplitude
e2rt.

For a frequency-modulated signal x(t) = A cos[φ(t)]
with φ(t) = ω0 +

∫ t

o
f(τ)dτ , we have

Γ[x(t)] = A2[ω0 + f(t)]2{cos2[φ(t)] + sin2[φ(t)]}
= A2[ω0 + f(t)]2

as ẋ(t) = −A[ω0 + f(t)] sin[φ(t)] and H[ẋ(t)] = A[ω0 +
f(t)] cos[φ(t)], assuming that there is no spectral overlap
between the instantaneous frequency (IF) ω0 + f(t) and
cos[φ(t)]. The operator therefore tracks the IF of the
signal.

For a linear combination of two signals, the operator
(like the Teager–Kaiser operator) contains cross-terms.
Consider y(t) = x1(t) + x2(t), with x1(t) = A1 cos(ω1t+
φ1) and x2(t) = A2 cos(ω2t+ φ2), then

Γ[y(t)] = Γ[x1(t)] + Γ[x2(t)] + a [sin(ω1t+ φ1)
× sin(ω2t+ φ2) + cos(ω1t+ φ1) cos(ω2t+ φ2)]

= Γ[x1(t)] + Γ[x2(t)] + a cos[(ω1 − ω2)t+ φ1 − φ2]
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Fig. 1. Signal with two components. Top plot: test signal x(n) =
1.3 cos(nπ/8) + 3.1 cos(nπ/32). Bottom plot: Teager–Kaiser oper-
ator and the proposed envelope–derivative operator energy values
equal to sum of the individual frequency-weighted energy plus an
oscillation term proportional to the difference in the frequencies
of 3π/32. The Teager–Kaiser has an additional modulation term
which can create negative values.

where a = 2A1A2ω1ω2. The operator includes a term
which oscillates at a frequency equal to the difference of
the two components. This differs to the Teager–Kaiser
operator, which includes an additional modulation term
[1]. Fig. 1 shows an example comparing the two opera-
tors for a two-component signal and highlights the non-
negative property of the envelope–derivative operator.

C. Discrete Definition
The discrete version of the continuous equation in (1)

is defined as [1]

Ψ[x(n)] = x2(n)− x(n+ 1)x(n− 1) (4)

for discrete signal x(nT ), assuming that the sampling
period T = 1, using the forward difference method to
estimate differentiation, with ẋ(n) = x(n + 1) − x(n).
Properties for the discrete version are similar to the
continuous definition with one notable distinction: be-
cause the forward difference method only approximates
the continuous derivative function, Ψ[A cos(ω0n)] =
A2 sin2(ω0) which differs from the ideal response of A2ω2

0 .
If the sampling frequency is increased by a factor of 4,
then Ψ[A cos(ω0n)] ≈ A2ω2

0 as ω2 ≈ sin2(ω) within the
region 0 ≤ ω ≤ π/4; this approximation holds with a
maximum error of 11% [1].

Similarly, using the central-finite difference method,
defined as ẋ(n) = [x(n+1)−x(n−1)]/2, for the envelope–
derivative operator in (3),

Γ[x(n)] = 1
4
[
x2(n+ 1) + x2(n− 1) + h2(n+ 1)+

h2(n− 1)
]

+ 1
2 [x(n+ 1)x(n− 1) + h(n+ 1)h(n− 1)]

with h(n) defined as h(n) = H[x(n)]. This dis-
crete Hilbert transform is defined for signal x(n) as
IDFT{−j sgn(N/2 − k) sgn(k)X(k)}, where X(k) =
DFT{x(n)} (DFT is the discrete Fourier transform and
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IDFT is the inverse discrete Fourier transform). Also,
similar to the Teager–Kaiser operator, Γ[A cos(ω0n)] =
A2 sin2(ω0).

D. Noise Analysis
The Teager–Kaiser operator is biased in the presence

of noise [1]. For signal y(n) = s(n)+w(n), where w(n) is
zero-mean white Gaussian noise of variance σ2 and s(n)
is a deterministic signal, taking the expectation gives

E{Ψ[y(n)]} = Ψ[y(n)] + σ2

where the symbol E represents the expectation operation.
Agarwal and Gotman presented an alternative operator
to the overcome this noise-bias [6]:

Θ[x(n)] = x(n− 1)x(n− 2)− x(n)x(n− 3) (5)

which does not contain the bias term σ2,

E{Θ[s(n) + w(n)]} = Θ[s(n)]

The operator in (5) was proposed as part of a more
general (discrete) nonlinear operator proposed by Plotkin
and Swamy [7] as

O[x(n)] = x(n− l)x(n− p)− x(n− q)x(n− s)

for l + p = q + s. When l = p and |q − s| = 2, O[x(n)]
is a time-shifted version of the Teager–Kaiser operator.
Likewise, when |l − p| = 1 and |q − s| = 3, O[x(n)] is
time-shifted version of Θ[x(n)]. As Plotkin and Swamy
proposed a more general class for O[x(n)], with |l− q| =
|p − s| = b for any integer b 6= 0 [7], we refer to the
operator Θ[x(n)] as the Agarwal–Gotman operator [6].
A point worth considering. Agarwal and Gotman

stated that Θ[A cos(ω0n) + φ] = A2 sin2(ω0) [6]; we
find that Θ[A cos(ω0n) + φ] = 2A2 sin2(ω0) cos(ω0). And
Θ[A cos(ω0n) + φ] ≈ A2ω2

0 for 0 ≤ ωπ/6.33. We arrived
at this range experimentally to yield an approximate
error of 11%. The Agarwal–Gotman operator therefore
requires up-sampling by a factor of 6.33, greater than
the factor of 4 for the Teager–Kaiser operator.

The up-sampling process transforms white to coloured
noise, and in this case

E{Ψ[y(n)]} = Ψ[y(n)] + σ2[Rww(0)−Rww(2)]
E{Θ[y(n)]} = Θ[y(n)] + σ2[Rww(1)−Rww(3)]

where Rww(n) is the autocorrelation function of
w(n). If we incorporate the necessary up-sampling,
then T1 = 6.33T2/4 where T1 is the sampling
period for the Teager–Kaiser operator and T2 is
the sampling period for the Agarwal–Gotman opera-
tor, then E{Ψ[w(n);T1]} = σ2[Rww(0) − Rww(2T1)]
and E{Θ[w(n);T2]} = σ2[Rww(T2) − Rww(3T2)] =
σ2[Rww(4T1/6.33) − Rww(12T1/6.33)]. Assuming that
Rww(m), for m = 0, 1, 2, 3, is monotonically decreasing,
then σ2[Rww(0)−Rww(2T1)] > σ2[Rww(T2)−Rww(3T2)].
Both operators will have a bias term although this bias
term will be smaller for the Agarwal–Gotman operator.
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Fig. 2. Expectation of the three energy operators for white
Gaussian noise. Noise was zero mean with a variance (σ2) of one.
The expectation operation was approximated by averaging over
10 000 realisations. Each noise signal, of length 64 samples, was
up-sampled prior to analysis thus converting the white noise to
coloured noise. Noise was up-sampled by a factor of 4 for the
Teager–Kaiser and envelope–derivative operators and by a factor
of 6.33 for the Agarwal–Gotman operator.
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Fig. 3. Examples of EEG with expert annotations (grey blocks).
Top: EEG from a term baby showing tracé alternant with an-
notations below the signal highlighting the high-voltage activity.
Bottom: EEG from a preterm baby with annotations highlighting
burst activity.

Simulations in Fig. 2 highlight similar conclusions and
show that the Teager–Kaiser and envelope–derivative
operators have similar bias-terms.

III. DETECTION APPLICATION FOR
NEWBORN EEG

An application of energy measures is the detection of
high-voltage activity in the EEG of newborn infants [2],
[8]. For this application, we selected a data set from
existing EEG recorded at the neonatal intensive care
unit in Cork University Maternity Hospital (CUMH),
Ireland. Informed parental consent was obtained prior to
EEG data collection and ethical approval was obtained
from CUMH and University College Cork. All data was
anonymised at time of recording.

The data set consisted of 2-minute epochs from 10
preterm (premature) infants and 10 full-term infants.
Expert electroencephalograghers annotated burst activ-
ity in the preterm data and high-voltage activity in the
tracé alternant pattern of the full-term data. One channel
from each EEG record was used in the analysis. EEG was
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Fig. 4. Detection performance of different methods. Results
for detecting high-voltage activity in the tracé alternant pattern
of fullterm EEG data (top plot) and burst-activity in preterm
EEG data (bottom plot). Each data set includes 2 minute EEG
recordings from 10 babies. The area-under the (receiver-operating
characteristic) curve (AUC) measures detection performance; the
coloured, thick vertical lines represent the inter-quartile range
and the black, thin horizontal lines represent the median. Post-
processing options include taking the absolute (abs.) value of the
operator and applying a 1.5 second moving-average filter.

recorded with a sampling frequency of 256 Hz and was
low-pass filtered at 20 Hz, using a 6-order elliptic filter,
to avoid high-frequency artefacts.

We compared the proposed envelope–derivative op-
erator to the existing Teager–Kaiser operator and its
variants. Specifically, we assessed the detection perfor-
mance of the Teager–Kaiser operator in (4) and the
Agarwal–Gotman operator in (5). And for comparison,
we included an instantaneous energy measure (square of
the signal) without frequency weighting [8]. In addition,
we applied two different post-processing methods: tak-
ing the absolute value of the operators (not applicable
to the non-negative envelope–derivative operator) and
by applying a low-pass filter, in the form of 1.5 sec-
ond moving-average window. These post-processing steps
were proposed for detecting bursts in preterm EEG using
the Agarwal–Gotman operator [2].

IV. RESULTS AND DISCUSSION
Fig. 4 shows the results for both data sets. Perfor-

mance was assessed on time-based agreement (sample-
by-sample) using the area-under the receiver-operator
characteristic curve (AUC). Our first observation is that
the Teager–Kaiser and Agarwal–Gotman operators have
almost identical performance across all tests. We ex-
pect this result in a detection application when noise is
present throughout and, or, when both operators have
approximately similar noise bias. Second, performance
for both the Teager–Kaiser and Agarwal–Gotman oper-
ators, in their original form, is poor in comparison to the
envelope–derivative operator. This may be caused by the

fact that the Teager–Kaiser and Agarwal–Gotman oper-
ators can be negative and are more oscillatory. Applying
the absolute value or a low-pass filter helps improve
performance dramatically, increasing performance on the
preterm data, for example, from 0.57 to 0.76 AUC.

Third, for the full-term data, performance of the in-
stantaneous energy measure is similar to the frequency-
weighted energy measures. Thus, there may be little
difference in frequency between the low- and high-voltage
periods in the tracé alternant pattern. And the final
observation is that all frequency-weighted measures have
similar performance after post-processing.

In conclusion, the non-negative property of the
envelope–derivative has proved to be advantageous: the
absolute value of Teager–Kaiser operator is needed to
reach similar performance to the envelope–derivative
operator. One disadvantage of the envelope–derivative
operator is that the discrete definition requires a long-
duration Hilbert transform filter, thus increasing latency
for real-time implementations. Design of an effective
short-duration Hilbert transform filter for the operator
could be explored if required. But for many—if not
all—EEG applications, real-time implementation is not
a priority and the envelope–derivative operator presents
an ideal measure to assess instantaneous, frequency-
weighted energy. Computer code for all methods is avail-
able at http://otoolej.github.io/code/nleo/.
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