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Abstract— The visual appealing nature of the now popular
BOLD fMRI may give the false impression of extreme simplic-
ity, as if the the functional maps could be generated with the
press of a single button. However, one can only get plausible
maps after long and cautious processing, considering that time
and noise come into play during acquisition. One of the most
popular ways to account for noise and individual variability
in fMRI is the use of a Gaussian spatial filter. Although very
robust, this filter may introduce excessive blurring, given the
strong dependence of results on the central voxel value. Here, we
propose the use of the Isotropic Anomalous Diffusion (IAD) ap-
proach, aiming to reduce excessive homogenity while retaining
the natural variability of signal across brain space. We found
differences between Gaussian and IAD filters in two parameters
gathered from Independent Component maps (ICA), identified
on brain areas responsible for auditory processing during
rest. Analysis of data gathered from 7 control subjects shows
that the IAD filter rendered more localized active areas and
higher contrast-to-noise ratios, when compared to equivalent
Gaussian filtered data (Student t-test, p<0.05). The results seem
promising, since the anomalous filter performs satisfactorily in
filtering noise with less distortion of individual localized brain
responses.

I. INTRODUCTION

Magnetic resonance imaging provides several useful tools
for studying the human brain and functional brain imaging
(fMRI) is one of the most widespread technique for the study
of many aspects of brain constitution, like its activity, aging,
tumors, and other diseases [1], [2], [3], [4]. The now ubiq-
uitous term BOLD effect, discovered in 1992, is a surrogate
of the neuronal activity, which arises from differences in
blood oxigenation levels and depends on regional cerebral
metabolic demands. In order to correctly assess the brain
function with fMRI, serial image preprocessing procedures
are necessary prior to data analysis, in order to account for
differences in slice scan time, head movement and thermal
noise. One of the crucial steps in preprocessing is the BOLD
spatial filtering. Usually, a Gaussian kernel is used for noise
attenuation in fMRI and a consequent rise in signal-to-noise
ratio.

Although widely used, the Gaussian filtering approach
should be cautiously applied, because excessive smoothing
could bring errors to the final results. The main problem
is the intense image blurring, which affects local variations
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in the data and leads to errors. The blurring effect could
also cause data loss, since the excessive homogenity of the
resulting signal across space avoids detection of fine details
due to individual brain traits.

In recent years, a novel image filtering technique has been
proposed to account for complex structures and preserve
local subtle traits. The anomalous diffusion equation is the
base for this new filtering technique, applying the generalized
anomalous paradigm [5], [6], [7]. This approach has already
been applied in other areas such as Economics, Physics
and Biology [6]. The Isotropic Anomalous Diffusion Filter
(IAD), which relies on the anomalous distribution, provided
by the porous media equation discretization [8], could bring
enhancement in local inhomogeneity and long range preser-
vation effects to the filtering process, helping to maintain the
local natural variability.

The anomalous diffusion algorithm is based on an iterative
filter that generates an anomalous diffusion distribution,
known as q-Gaussian probability distribution. The long and
short tail distribution characteristic from the anomalous dif-
fusion behavior [6] has an important enhancement factor for
human imaging, that has been studying in recent researches
[8]. In fMRI context, the temporal series components of the
fMRI signal when filtered with local q-Gaussian iterative
kernels could present a decreasing in the noise intensity
present in this imaging technique and also preserve the
natural signal variation that is usual in the BOLD signal.

The ICA algorithm is a popular benchmark algorithm
aimed at extracting signal in a blind data-driven fashion.
The algorithm is applied to whole- brain voxels in order to
separate the information set into networks with maximally
independent fluctuations [9]. The resulting individual ICA
maps reveal two complementary principles underlying the
study of brain organization: localization and connectionism.
While the localization approach considers that a given brain
function is accomplished by a finite set of specific and
segregated brain areas, connectionist views consider that
these areas may be widely distributed and functionally con-
nected across space [10]. The balance between segregating or
connecting brain regions is well characterized by ICA maps.
Usually, the maps present z-transformed statistical values, a
measure of the relative amount a given voxel is modulated
by the activation of a certain component. Above a certain
threshold, surviving voxels can be labeled as ’active’ for that
component. [9].

ICA algorithm identifies long range relationships between
voxels across distant regions, on the other hand, classic
Gaussian approach distorts the local fluctuation, causing
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information loss within these activation areas. Here we
propose the use of the IAD filter for a better characterization
of active regions found by the ICA algorithm, that could
preserve local fluctuations while providing confidence for
cluster segmentation.

II. MATERIALS AND METHODS

A. Functional MRI Parameters

Seven healthy subjects (gender: 2 males, 5 females; mean
age: 33 years, range 21-60 years) with no reported history of
auditory, neurological, or psychiatric disorders were selected
from the image database in the Clinics Hospital of Faculty
of Medicine of Ribeirão Preto (CHFMRP). No auditory
stimulation where used in all image acquisition procedure.

The images were acquired with a Philips Achieva 3.0-T
MRI equipment (Best, The Netherlands) using a standard 8-
channel head coil. Echoplanar sequences had the following
parameters: 200 volumes, 32 slices in ascending order, 4-
mm slice thickness, .5 mm gap thickness, voxel size = 3 ×
3 mm, field of view = 240 × 240 mm, TR/TE = 2000/30
ms. The silent sequence was used by setting the ”soft-tone”
parameter, offered by the MRI equipment, decreasing the
noise level in 3.65 dB, which decreases the gradient slew
rate leading to lower coil vibration levels [11].

B. Image Processsing

The image were processed using FSL software [12]. Func-
tional volumes were corrected for 3-D motion with reference
to the middle volume, using the Affine non linear image
registration algorithm, that is part of the FSL MCFLIRT tools
[13]. After the filtering process, the functional image entered
the ICA algorithm, which resulted in individual ICA maps.
We fixed 30 ICA maps in order to lead to sufficient clustering
estimation, what in fact it is a usual adoption for ICA analysis
in fMRI. Auditory BOLD components were identified by
visual inspection of bilateral clusters in superior temporal
areas. A profile was delineated along the antero-posterior
direction of these clusters and z-ICA values were verified
for further comparison between the spatial filters (Gaussian
versus Anomalous).

The filters used here were the classical Gaussian filter,
and the Isotropic Anomalous Diffusion (IAD) filter. For the
Gaussian approach, the filtering intensity is regulated by
the Full Width at Half Maximum (FWHM ) parameters,
and usually it is defined between 5 and 12 mm. In our
study we used FWHM = 7mm for Gaussian filtering.
The IAD filter has three parameters: time t, the generalized
diffusion coefficient Dq and the anomalous parameter (q).
The values for t and Dq used here were t = 12 and
Dq = 1.0. The IAD filtering parameters were chosen based
on previous studies done with T1 and DTI MRI protocols
[14], [8], where the filter showed improvements in filtering
performance, attenuating the noise in those image modalities.
For this reason the q parameter was set fixed to q = 1.3.
These parameters values are equivalent to the FWHM
parameter as seen in Equation (1), which are derived using

the generalized Einstein equation (σ2 proptot2/3−q) and the
FWHM definition [15].
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Some local measurements were chosen in order to analyze
a quantitative behavior conducted from the IAD and Gaus-
sian filter. The first metric used is the total brain activated
area, that is supposed to be lower in the IAD method due
to natural variability preservation. Other metrics such as
the minimum and maximum value were chosen to note the
gray value preservation, i.e. the IAD filter must preserve the
general voxel information presented in the whole activation
region. Finally, a Contrast-to-noise ratio (CNR) measurement
was chosen to quantify the enhancement differences between
the spatial filters [16]. The CNR formulation used here is
defined in Equation 2.

CNR =
σ2
S

σ2
N

(2)

Where σ2
S and σ2

N are defined by the ratio between the
variances of active (signal) and background (noise) z-ICA
values of auditory maps.

C. Isotropic Anomalous Diffusion Filter

The IAD filter is a generalization of the classical diffusion
process, i.e. the Gaussian filter. The numerical algorithm is
shown in Equation (3) and it is basically the same algorithm
as seen in the classical approach. The Equation (3) simulates
the diffusion process in each neighborhood in the image in
discrete form, regulated by the anomalous parameters such
as the q value (a parametric curve adjust) and the generalized
diffusion coefficient (Dq).

It+1,β = It,β +
[
D(−→r )q.∇I2−q

t,β−1 +D(−→r )q.∇I2−q
t,β+1

]
(3)

For simplicity, I2−q
t,β represents the image at time t ac-

cording to locating a 3 × 3 neighborhood of the center
pixel for a defined anomalous parameter q. The parameter
β informs the spatial position of the neighbor relative to
the central pixel and, upon this orientation, the pixel gets a
weighted value based on the anomalous solution generated
by Equation (3). There are two main points to discuss
about these differences: the anomalous q-distribution and the
generalized diffusion coefficient (Dq). The q-distribution is
in fact the probability distribution function that represents
the solution of the Equation (3). The q-distribution in this
case could be called the q-Gaussian probability distribution
and it is well know in Physics simulation problems [6].
The diffusion coefficient, Dq , is a parameter that regulates
the diffusion intensity in the image neighborhood and it
is defined by Equation (4). It is close to the relationship
between Dq and the q parameter, and both create a specific
q-Gaussian distribution in each neighborhood on the image.
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Fig. 1. Brain auditory activation thresholded on maps calculated with the two filters: A) Isotropic Anomalous Diffusion (IAD) and B) Gaussian filter.
The dotted lines, 1 and 2, define the profiles are shown in C) where z-ICA values keeps the natural inhomogeneity pertaining to this individual brain. The
Gaussian filter intensively smooths the whole area, distorting the natural signal fluctuations present in the BOLD signal and losing some BOLD signal
peaks (arrows).
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Where α = (2 − q)(3 − q)]2/(3−q) and 0 < q < 2
are the range for the q parameter for numerical stability in
Equation (3). In summary, the anomalous diffusion generates
another probability distribution function that is supposed
to be more suitable for the processing of images with
complex features. The time, t, parameter can be adjusted
in comparison with the variance (σ2) [6], with a relationship
given by σ2 = 2.Dq.t

2/(3−q). Furthermore, the full width
at half maximum (FWHM= 2.3548.σ) parameter, which is
usually defined for fMRI image processing, has a similar
relationship with t. This variance dependence with time is
know as the generalized Einstein equation and it describes
the smoothing behavior with the IAD filter.

TABLE I
BRAIN ACTIVATION AREAS MEASUREMENTS

Filter Area CNR Minimum Maximum
IAD 3367 ± 826 118 ± 25 1.6 ± 0.8 9.9 ± 2.1
Gaussian 4447 ± 982 87 ± 12 1.8 ± 1.1 10.61± 2.8

III. RESULTS AND DISCUSSION

Table I shows values of area, Contrast-to-noise ratio
(CNR), and minimum and maximum z-values of thresh-
olded auditory maps (z-ICA > 2.09). Values for area above
threshold and CNR were different depending on the filter
used (Student t-test, bicaudal, homocedastic, p<0.05). Gaus-
sian filtering renders larger areas than isotropic anomalous
diffusion filtering. CNR were computed under each filter
condition for each individual data set using a automatic
threshold, i.e. maximum entropy threshold algorithm, to
select the activated area. Contrast-to-noise was calculated by
dividing the variance inside the active area by the variance of
an equivalent area without activation. A t-test showed that
CNRs are different depending on the filter used (Student
t-test, bicaudal, homocedastic, p<0.05), with larger CNR
for anomalous filters (p=0.01). Figure 1 shows the results
of an ICA map of a representative subject under each
filtering condition, representing the auditory brain areas. The
interrupted lines on axial slices (top) represent the profiles
whose values are depicted in 1-C.

An interesting result that could be discussed with the
CNR measurement is the signal fluctuation into each brain
activated area, segmented by the ICA maps. As defined in
the Equation (2), the CNR measure represents the signal
deviation presented in determined region. The IAD filter
show a higher CNR value than the Gaussian filtering, which
represent a higher signal variability. Even with a low sample
size, the statistical analysis shown a promising result with
the IAD filter. Its behavior could be partially explained
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by the anomalous relationship between neighborhood voxel
influence. The anomalous approach, based on q-Gaussian
probability distribution, adds a non linear relationship in each
processing site, and this information is helpful to modulate
the MRI signal decay [17].

Figure 1-A and Figure 1-B illustrate 3D rendering of
brain surface showing active areas for both filters and
image profiles revealing additional activity peaks for IAD.
Some aspects can be highlighted in our results, pointing
to advantages in using the anomalous filter for functional
data analysis. First, IAD filter render more localized areas,
which are coincident with anatomical landmarks, as can be
observed in Figure 1-A. Also, the profile shown in Figure
1-C retains local variation of the underlying anatomy, thus
preserving two main points: the local BOLD signal variation
and an effective noise smoothing. On the contrary, Gaussian
filtering results in more widespread activations, that can be
explained by a strong dependence on the central voxel value.
Furthermore, the local z-ICA values distribution shows an
excessively smooth central region, implying in low signal
variation inside active areas.

IV. CONCLUSIONS

The non homogeneous media provide a spatial signal
complexity that must be preserved by the filtering process
for more accurate and consistent ICA segmentation. Usually,
the Gaussian filtering process is commonly applied in much
functional magnetic resonance imaging (fMRI) research.
However, the strong blurring and signal loss provided by
this classical filtering approach is well know and could
provide some errors in future image analysis. The isotropic
anomalous diffusion (IAD) filter showed to be a better
filtering method for BOLD smoothing. In comparison with
the Gaussian filter, the IAD filter demonstrated a local natural
signal fluctuation suitable for fMRI processing. The Gaussian
filter does not have a robust noise suavization, that can be
seen with the IAD filter.

This study reports preliminary results obtained with a
specific parameter set. In a future research, we will study
the noise suavization effect that could be found with the
other q value range, between 0 < q < 1. Here we used
the long range q-Gaussian approach, with q = 1.3, but a
study is necessary with the local finite q-Gaussian approach
which is defined with q < 1 values. A further study with
more extensive images groups is necessary to guarantee
statistical equivalence between the filters. In addition, a more
accurate results should be reached with higher image sample.
Even with a limited sample, the ICA segmentation outcomes
highlighted here suggest a promising application using the
IAD filtering approach for fMRI studies.
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