
  

 

Abstract— In this paper, we present a fully automated 

localization method for multiple pelvic bone structures on 

magnetic resonance images (MRI). Pelvic bone structures are 

currently identified manually on MRI to identify reference 

points for measurement and evaluation of pelvic organ 

prolapse (POP). Given that this is a time-consuming and 

subjective procedure, there is a need to localize pelvic bone 

structures without any user interaction. However, bone 

structures are not easily differentiable from soft tissue on MRI 

as their pixel intensities tend to be very similar. In this 

research, we present a model that automatically identifies the 

bounding boxes of the bone structures on MRI using support 

vector machines (SVM) based classification and non-linear 

regression model that captures global and local information. 

Based on the relative locations of pelvic bones and organs, and 

local information such as texture features, the model identifies 

the location of the pelvic bone structures by establishing the 

association between their locations. Results show that the 

proposed method is able to locate the bone structures of 

interest accurately. The pubic bone, sacral promontory, and 

coccyx were correctly detected (DSI > 0.75) in 92%, 90%, and 

88% of the testing images. This research aims to enable 

accurate, consistent and fully automated identification of pelvic 

bone structures on MRI to facilitate and improve the diagnosis 

of female pelvic organ prolapse.  

I. INTRODUCTION 

Pelvic Organ Prolapse (POP) is a serious health 

condition that affects about 30-50% of women [1]. It occurs 

when a pelvic organ such as bladder, uterus, small bowel 

and rectum drops from its normal position and pushes 

against the vaginal walls. Dynamic magnetic resonance 

imaging (MRI) is currently being used for assessing POP as 

it provides global assessment of the movements and 

interactions of pelvic floor organs while avoiding the use of 

ionizing radiation [2]. The current practice consists of 

manually identifying specific reference points on three 
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pelvic bone structures as shown in Fig. 1: pubic bone, sacral 

promontory, and coccyx. 

 
Figure 1. Regions of interest. 

Based on these points, reference lines are drawn to 

measure and define the severity of POP. Unfortunately, the 

manual identification of these points and measurements is a 

time-consuming and subjective procedure. For this reason, it 

is expected that a model that automatically locates the bone 

structures of interest and extracts image-based predictors 

from patient specific MRI can facilitate and improve the 

evaluation of POP. However, bone structure detection is a 

challenging task on MRI since bones are not easily 

differentiable from the soft tissue as their pixel intensities 

tend to be very similar. 

Various approaches have been proposed for the 

automated organ localization in medical images using 

geometric methods, statistical atlas-based techniques, and 

supervised methods to find multiple organs such as heart, 

liver, spleen, lungs, kidneys and bladder [3-10]. Among 

supervised methods, there has been an increasing interest in 

regression-based approaches for anatomical structure 

localization, since organs and tissues in the human body 

have known relative arrangement. Zhou et al. [11] 

introduced an approach based on boosting ridge regression 

to localize the left ventricle in cardiac ultrasound 2D images. 

Criminisi et al. [12] proposed regression forests to predict 

the location of multiple anatomical structures in CT scans. 

Cuingnet et al. [13]  presented an improved regression forest 

to find kidneys in CT scans. Bagci et al. [14] built a 

hierarchical transfer function from image space to object 

space to find anatomical structures in CT and MRI. These 

methods use the difference of mean intensities to locate the 

bounding boxes of the anatomical structures on the images. 

Since considering only intensity levels in MRI is not 

sufficient for the localization of anatomical structures, 

particularly bone structures, a new approach is needed to 

automatically detect bone structures on MRI. 

In this paper, we present a fully automated model that 

locates the bounding boxes of multiple bone structures on 
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MRI using support vector machines (SVM) based 

classification and non-linear regression model with global 

information. The presented method first identifies organs 

using k-means clustering and morphological opening 

operations. Then, it uses the spatial relationship between the 

organs and bone structures to estimate the locations of the 

latter. The pubic bone is located using the relative location 

between bones and organs, and texture information. Then, a 

non-linear regression model is used to predict the location of 

other bone structures whose local information is weak such 

as sacral promontory and coccyx. The main contribution of 

this approach is a new parameterization through non-linear 

regression approach for the multiple bone localization 

problem on MRI. 

II. MULTIPLE BONE LOCALIZATION FRAMEWORK 

As shown in Fig. 1, three regions of interest (ROIs) need 

to be located automatically that correspond to the pubic bone, 

sacral promontory, and coccyx. However, bones are not 

easily differentiable from the soft tissue on MRI as their pixel 

intensities tend to be very similar. This is particularly true for 

bones located on the vertebra such as sacral promontory and 

coccyx. On the other hand, both the bladder and the rectum 

are easily visible as retrograde bladder/ureteral dye is injected 

during image capturing to improve visualization. Therefore, 

the regions for both the bladder and the rectum have high 

intensity values on the MR images and can be used as 

contextual information to automatically locate the pelvic 

floor structures of interest. For these reasons, our approach 

consists of localizing the pubic bone first using both global 

and local information, and then use global information to 

localize the sacral promontory and coccyx.  

 
Figure 2. Overview of the proposed method. 

The proposed method consists of three main steps: 

identification of bladder and rectum, identification of pubic 

bone region, and identification of coccyx and sacral 

promontory regions (see Fig. 2). The first step starts with 

noise reduction and contrast adjustment of the images. Then, 

the bladder and rectum are identified using bisecting k-

means clustering using pixel intensities and morphological 

opening operation. In the second step, the pubic bone region 

is localized based on “key” points, which are corner points 

on the input image that satisfy certain intensity and location 

constraints. Based on the identified key points, candidate 

bounding boxes of the pubic bone can be determined. The 

best bounding box that describes the pubic area is selected 

using support vector machines (SVM) with 2D box features. 

In the third step, the coccyx and sacral promontory regions 

are localized using the location of the bladder, rectum and 

pubic bone via a non-linear regression model. Following is 

the detailed description of the proposed method. 

A. Dataset Description  

A representative set of 207 dynamic MRI were used in 

this study. The dataset was divided into a training set of 117 

images and a testing set composed of the remaining 90 

images. MR images were obtained from a 3-Tesla GE system 

(General Electric Company, GE Healthcare, UK) using an 8-

channel torso phased-array coil with the patient in a modified 

dorsal lithotomy position. Dynamic MRI of the pelvis is 

performed using a T2-weighted single-shot turbo spin-echo 

(SSH-TSE) sequence in the midsagittal plane for 23-27 

seconds with a temporal resolution of 2s (FOV 300×300 

mm2, slice thickness 3 mm, TR/TE 2,000/75 ms, 20 image 

sequences, in-plane resolution of 1.6×1.6 mm2).    

B. Identification of Bladder and Rectum 

The first step of the proposed method is to perform 

noise reduction by applying a 3 by 3 Gaussian kernel due to 

its computational efficiency. After noise reduction, contrast 

adjustment is performed to improve the contrast in the 

images by stretching the range of intensity values. 

Given the clearer visibility of the bladder and the 

rectum on dynamic MRI due to ureteral dye use, these two 

organs can be automatically identified to be used as 

contextual information for the localization of the bone 

structures. We use a “bisecting k-means” algorithm to 

identify regions on the image and to overcome the 

initialization susceptibility of the basic k-means clustering 

algorithm. In our study, the value of k is 4 because the 

region of the pelvic floor is divided into four sub-regions 

representing the bone, cartilage, soft tissue and organ, and 

background.  

After identifying the four types of regions, the regions 

with the highest intensity are selected to locate the bladder 

and rectum regions. However, many regions with similar 

intensities to the bladder and rectum may be identified. To 

separate the organs of interest, size, homogeneity, and 

location constraints were incorporated. For size constraint, 

connected regions that have less and more than a specified 

number of pixels were removed using morphological 

opening operations. The minimum and maximum size for a 

region to be retained is 1,800 pixels and 10,000 pixels, 

respectively. These values were obtained based on the image 

dataset. For homogeneity, it was observed that the bladder 

and rectum regions on MRI are homogeneous regions 

without internal holes. Therefore, the euler number, which is 

a topological descriptor, was used to determine the number 

3354



  

of holes inside the regions and to eliminate those regions 

with internal holes. Finally, as location constraint, the 

location of the bladder and rectum normally appear close to 

the middle of the image so the search of these two organs 

was limited to the center of the image.  

C. Identification of Pubic Bone Region  

The localization of the pubic bone is achieved through 

the identification of key points on the image that satisfy 

specific location and intensity constraints. These key points 

are generated through the identification of corner points 

using the Harris corner detector [15]. Although there is no 

relationship between corner points and the appearance of the 

pubic bone, corner points can be extracted without any user 

input and result in fewer points to be analyzed in comparison 

with using pixels. Then, spatial filtering was used to 

eliminate corner points that are outside of the vicinity of the 

pubic bone. The filtering operation includes location and 

intensity constraints to ensure that corner points that are 

below and to the left of the bladder and within a specific 

distance and intensity range are retained.  

After spatial filtering, potential pubic bone regions are 

generated as seen in Fig. 3. These bounding boxes are 

centered at the keypoints and the size is set to a fixed value 

to enclose the pubic bone region. This value was determined 

based on the analysis of the image dataset obtained for this 

study. Each of these bounding boxes represents a potential 

bounding box for the pubic bone. However, as shown in Fig. 

3, some of these bounding boxes do not completely enclose 

the pubic bone as the keypoints may fall near the boundaries 

of the bone. For this reason, the bounding boxes that 

completely enclose the pubic bone need to be identified. To 

do this, we propose to analyze each candidate region based 

on 2D box features and texture features. 2D box features 

provide the average intensity difference between two 

displaced boxes. Texture features have shown to enable 

more reliable results on MRI by providing the relative 

position information of any two pixels with respect to each 

other [16, 17]. We used 297 generated 2D box features and 

six texture features. The texture features in this study are 

average gray level, average contrast, smoothness, skewness, 

uniformity, and entropy. Since each feature provides unique 

information to group the candidate regions, all of them were 

used in the classification process. 

 
Figure 3. Examples of generated candidate regions for pubic bone. 

  Since the centered pubic bone is desirable for bounding 

boxes bone location process, 2D box features provide 

information on whether the pubic bone is in the center of the 

bounding box or not. Similarly, texture features calculate six 

measures of texture from each generated region. 

The feature set representing the candidate regions is 

evaluated using SVM. SVM has been shown to achieve the 

highest classification accuracy for medical diagnosis 

compared to other classification techniques [18, 19]. Our 

study consists of a two-class problem where candidate 

bounding boxes are classified into bounding boxes of pubic 

bone or not. The classification of the candidate regions 

involves two steps: construction of the classifier and 

prediction. In the first step, a classifier structure is 

constructed based on the training data set using SVM. We 

trained SVM using the Gaussian radial basis function kernel 

to provide a non-linear decision surface. The model was 

evaluated using 10-fold cross validation. After the regions 

are trained according to the features, the second step of the 

segmentation process is to apply the model to test images 

using the built SVM classifier. The anticipated outcome at 

the end of this process is a set of two groups of regions that 

are automatically classified as enclosed pubic bone regions 

and partially enclosed pubic bone regions. 

D. Identification of Coccyx and Sacral Promontory Regions 

Given that the locations of the bladder, rectum, and 

pubic bone are strongly correlated with the locations of the 

sacral promontory and coccyx, we built a non-linear 

regression model to predict the location of the coccyx and 

sacral promontory regions. We parameterize the location of 

the pelvic floor structures using the bladder, rectum and 

pubic bone location information. For training, we consider 

our input as (     ), where    is the input matrix and    is 

the predicted matrix.     consists of the locations of the 

centroids of the structures, and the relative distances 

between the centroids of the bladder and rectum to the 

centroid of the pubic bone.    consists of the distances 

between the centroids of sacral promontory and coccyx to 

the centroid of the pubic bone. The validation of the trained 

model was checked with 10-fold cross validation.  

Once the centroids of the sacral promontory and coccyx 

are identified, their bounding boxes are determined based on 

the mean and variation of the bounding boxes from the 

training dataset. PCA is used to provide the fixed size of the 

bounding box for each region. For instance, the maximum 

size for the bounding box of the sacral promontory has been 

defined as [60px x 60 px] based on the training dataset and 

PCA. For the coccyx, the maximum size for the bounding 

box was determined to be [30px x 30px]. These bounding 

boxes are centered at the centroids of the sacral promontory 

and coccyx. 

III. RESULTS 

The validation of the proposed multiple bone 

localization model was performed on a representative 

clinical dataset of 207 dynamic MRI. The presented method 

was implemented using Matlab 2012b on a workstation with 

3.00GHz dual processors and 2 GB RAM. 

The regions identified through the proposed localization 

method were compared to the regions identified manually by 

experts. The Euclidean distance between the centers of the 

predicted and ground truth bounding boxes was used to 

assess the accuracy of the bone localization approach. In 

addition, we quantified the region overlap between the 
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predicted and ground truth regions using the Dice Similarity 

Index (DSI). 

Table I provides the average center error in mm for the 

90 testing images. The average center error for the pubic 

bone is 3.2 mm with 1.2 mm standard deviation. For the 

coccyx, the average center error is 14.5 mm with 4.6 mm 

standard deviation while the error and standard deviation for 

the sacral promontory are 8.1 mm and 3.8 mm, respectively.  

It can be observed that the center error for the pubic bone is 

the lowest compared to the coccyx and sacral promontory 

while average center error for the coccyx is the highest. The 

reason is that both local and global information was used for 

the localization of the pubic bone whereas only global 

information was used for the coccyx and sacral promontory. 

This is due to the lack of local information that could be 

used to identify these two bones. Moreover, the manual 

identification of the coccyx on MRI by experts is very 

difficult and subjective thus explaining the high average 

center error for the coccyx by the presented model.  

 TABLE I. AVERAGE CENTER ERROR (MEAN ± 
STANDARD DEVIATION) FOR PELVIC BONE DETECTION  

Average Center error (mm) 

Pubic bone Coccyx Sacral Promontory 

3.2±1.2 14.5±4.6 8.1±3.8 

TABLE II. PERCENTAGE OF CORRECTLY DETECTED 
CASES BY THE PROPOSED BONE LOCALIZATION MODEL  

 Pubic bone Coccyx Sacral Promontory 

DSI > 0.90 90% (82) 81% (79) 86% (81) 

DSI > 0.75 92% (82) 88% (79) 90% (81) 

DSI > 0.65 98% (82) 93% (79) 96% (81) 

Table II provides the percentage of correctly detected 

cases at different thresholds for DSI. It can be observed that 

even at very high thresholds for DSI, the proposed method 

can correctly detect the pubic bone (DSI > 0.90) in 90% of 

the testing images by the proposed scheme. Similarly, the 

proposed scheme correctly detected the sacral promontory in 

86% of the unknown images and the coccyx in 81% of the 

images. Once the overlapping percentage between two 

regions is decreased to 0.75, the proposed scheme correctly 

detected the pubic bone (DSI > 0.75) in 92% of the testing 

images. At the same time, the sacral promontory and coccyx 

were correctly detected in 90% and 88% of the testing 

images, respectively  

IV. CONCLUSION 

A model using SVM based classification and non-linear 

regression model with global and local information is 

presented to automatically localize multiple pelvic bone 

structures on MRI. The main contribution of this approach is 

a new parameterization through non-linear regression 

approach for the multiple bone localization problem. The 

model uses the location of pelvic organs to approximate the 

relative location of the pelvic bones. The best pubic bone 

region is selected using a SVM classifier based on texture 

and 2D box features. Then, a non-linear regression model 

was built to establish the association between the locations 

of the bladder, rectum, and pubic bone with respect to the 

location of the sacral promontory and coccyx. Results 

demonstrate that the presented method can accurately find 

the location of the bone structures on each image 

consistently. Additional information might be needed to 

improve the localization of the sacral promontory and 

coccyx regions using local information. The presented 

method can be applicable for the automated localization of 

bone structures on MRI to facilitate the extraction of 

measurements for clinical diagnosis.  
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