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Abstract— Multiparametric MRI has shown considerable
promise as a diagnostic tool for prostate cancer grading.
Diffusion-weighted MRI (DWI) has shown particularly strong
potential for improving the delineation between cancerous
and healthy tissue in the prostate gland. Current automated
diagnostic methods using multiparametric MRI, however, tend
to either use low-level features, which are difficult to inter-
pret by radiologists and clinicians, or use highly subjective
heuristic methods. We propose a novel strategy comprising a
tumor candidate identification scheme and a hybrid textural-
morphological feature model for delineating between cancerous
and non-cancerous tumor candidates in the prostate gland
via multiparametric MRI. Experimental results using clinical
multiparametric MRI datasets show that the proposed strategy
has strong potential as a diagnostic tool to aid radiologists and
clinicians identify and detect prostate cancer more efficiently
and effectively.

I. INTRODUCTION

Prostate cancer is the most-diagnosed form of cancer in
Canadian men, with an estimated 23,600 new cases projected
to be diagnosed in 2013 with 3,900 of those cases expected
to result in death [1]. Although it is the third leading cause
of cancer death in men, prostate cancer has good prognosis if
detected early [2]. Effective and reliable screening methods
for prostate cancer are therefore very important.

Several different methods are currently used to detect
prostate cancer, though none are widely-accepted or stan-
dardized. The prostate-specific antigen (PSA) test measures
the concentration of specific markers in the patient’s blood
where in high levels indicate high risk for prostate cancer.
However, use of the PSA test has been criticized for having
an unacceptably high occurrence of false positives, causing
healthy patients to undergo expensive and uncomfortable
confirmatory tests [3], [4]. Following a positive PSA test,
a systematic transrectal ultrasound (TRUS) guided biopsy is
undertaken where multiple samples are collected. Although
core biopsies are very accurate, they are intrinsically inva-
sive, causing significant discomfort to the patient and expos-
ing him to possibly unnecessary surgical risk. Furthermore,
TRUS cannot detect isoechoic tumors making TRUS-guided
biopsies even more difficult.

Multiparametric magnetic resonance imaging (MRI) has
shown considerable promise for diagnosis, especially the
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(a) T2w (b) DWI: apparent diffusion
coefficient (ADC)

Fig. 1: Example multiparametric MRI slices of the same
prostate gland, using T2w and diffusion-weighted imaging
(DWI). Each modality provides different information about
the prostate gland to aid in the clinical decision support
process.

combination of T2-weighted MRI (T2w) and diffusion-
weighted MRI (DWI). T2w affords doctors the ability to
see relatively high-resolution imagery of the prostate and
surrounding tissue, while allowing detection of subtle struc-
tural features. Recent research has focused on DWI and the
DWI-derived Apparent Diffusion Coefficient (ADC), which
quantifies the diffusion of water molecules through tissue and
has been shown to delineate between healthy and cancerous
tissue [5]. Example multiparametric MRI scans are shown
in Figure 1. It can be observed that each modality provides
different information about the prostate gland, which is
useful in aiding radiologists and clinicians in the clinical
decision support process.

Detecting prostate cancer automatically has been a pop-
ular area of research and to date, these methods have fo-
cused exclusively on low-level features. Conventional multi-
parametric MRI prostate cancer analysis approaches use one
or more of the MRI modality values or derived values,
including ADC and T2w, with no complementary high-
level features [6]. Published values for classification accuracy
using these low-level features ranges from 64% to 89% [5]–
[10].

More sophisticated approaches calculate multiple low-
level features and then combine them using an ensemble
classification strategy. Low-level features considered in such
approaches include statistical features (e.g. local variance)
and change-of-basis features such as Gabor filter coeffi-
cients [11], discrete cosine transform (DCT) coefficients and
textural features (both first and second-order), such as those
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derived from co-occurrence matrices (CMs). Chan et al. [7]
reported that compared to using MRI intensity features ex-
clusively, DCT and CM features improved accuracy between
6.2% and 11.0% (accuracy of 72.9% without those features,
and 79.1% – 83.9% with them). Madabhushi et al. [11]
reported a Positive Predictive Value (PPV) of approximately
21% when using a combination of first and second-order sta-
tistical features, gradient features, and Gabor features within
an ensemble classification framework. However, since the
low-level features lack semantic meaning, the classification
decisions made by such approaches are difficult to justify
to radiologists and clinicians, who typically use subjective
heuristics to diagnose patient cases. Although the latter
approach is easy to understand and justify, its subjective
nature makes it highly inconsistent.

High-level features on the other hand have been used in
detecting and localizing prostate cancer; however, their use
is still limited. Naik et al. [12] demonstrated that classifiers
built using high-level features designed using domain knowl-
edge are effective at diagnosing prostate tissue as cancerous
and distinguishing cancerous tissue between two grades on
the Gleason scale, with classification accuracy in the range
of 86–95%. Unfortunately, this method uses high-resolution
imagery from scanned histology slides, necessitating inva-
sive surgery. Haider et al. [6] described a scoring scheme
for diagnosing prostate cancer based on high-level features
observed in T2w and ADC imagery. However, these features
are not easily quantifiable and are intended for use by trained
radiologists and not classification algorithms.

By examining how existing low and high-level feature
models are used, we motivate the need for a quantitative
high-level feature model. In this paper, we investigate the
use of high-level features, such as tumor morphology, for
detection of prostate cancer. With intuitive features, classifi-
cation decisions can be more easily justified and explained to
medical practitioners, while simultaneously providing more
consistently quantifiable measures. In this work, we intro-
duce a novel strategy for computer-aided prostate cancer
analysis that combines i) a tumor candidate identification
scheme based on multiparametric MRI and morphology,
and ii) a hybrid textural-morphological feature model for
delineating between cancerous and non-cancerous tumors
amongst the tumor candidates.

II. HYBRID TEXTURAL-MORPHOLOGICAL MODEL

In the proposed method, initial identification of candidate
tumor regions is automatically performed using multipara-
metric MRI and morphology. After candidate regions are
identified by the automatic tumor candidate identification
algorithm, textural and morphological features are extracted
to form a hybrid morphological-textural feature model that
combines high-level morphological features with low-level
textural features.

A. Automatic tumor candidate identification

Tumor candidate regions were identified automatically in
the proposed system using guidelines for clinical multipara-

metric MRI prostate cancer screening by a radiologist [6].
Tissues satisfying these criteria were grouped into connected
regions and analyzed further with the textural-morphological
feature model detailed below. In particular, diffusion charac-
teristics and morphology were used to automatically identify
candidate regions in the proposed system.

As low ADC values are associated with tumorous tis-
sue [6], tissue with ADC values below a particular threshold
were automatically identified by the proposed system as
possible tumor candidates. Considering that the priority of
the candidate identification phase is to highlight regions for
consideration, rather than to eliminate them, the threshold
value used in [6] was relaxed to capture more regions. All
voxels with an ADC value less than 1000 × 10−6 mm2/s
were flagged as possible tumor candidates. These flagged
voxels are then grouped into connected regions, and a second
phase is used in the automatic tumor candidate identification
algorithm to take morphology into account. In particular,
size is taken into consideration and all connected regions
larger than 1 mm2 were considered as the final set of tumor
candidate regions.

B. Textural features

After the tumor candidate regions have been identified,
a set of low-level texture features were computed for those
regions as part of the proposed hybrid morphological-texture
feature model. Texture features were included to capture
the different textural characteristics between cancerous and
healthy tissue [11]. T2w intensity values were included as an
initial feature. In addition, a series of local statistical features
and Gabor filter responses were extracted from the T2w
intensity images in order to quantify textural characteristics
of imaged tissue [11]. Texture features were also computed
using ADC values and likewise augmented with the ADC
map as a further feature. Feature values for each region
were obtained by averaging textural filter responses over the
region.

The statistical features consisted of the median, standard
deviation, and average deviation first-order features as well
as the contrast, correlation, and homogeneity second-order
features. All were computed using 3 × 3 and 5 × 5 voxel
regions around the voxel of interest [11].

Gabor filters were applied at a combination of scales
and orientations totalling 18 features, corresponding to the
scales u0 = {16

√
2, 32
√
2, 64
√
2} and the orientations θ =

nπ/6, n = 0 . . . 6.

C. Morphological features

In the proposed hybrid morphological-textural feature
model, a set of high-level features are also computed to
characterize the morphology of the tumor candidate region.
Morphological features capture structural information about
a candidate region by applying operations which smooth the
shape of the region boundary. Regions with little morpho-
logical irregularity undergo little change with the smoothing
operator, while regions with highly irregular shapes will see
a drastic difference.
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(a) Morphological area feature

(b) Morphological perimeter feature

Fig. 2: Illustrations of the morphological features. In 2a, the
area feature illustration, purple and orange contours denote
the morphological opening and closing, respectively, of a
candidate region. The large difference in areas between the
contours results in a high feature value for this region.
In 2b, the perimeter feature illustration, a candidate region
contour, shown in blue, has a perimeter similar in length
to that of the region’s low-frequency Fourier reconstruction,
shown in red, resulting in a low feature value for this region.

The first feature in this group is the normalized difference
in area between the morphological closing of the region and
the morphological opening of the region, using an identical
disk structuring element for both operations [13]:

fB1 =
Aclosed −Aopened

Ainitial
(1)

Here, A denotes the area of a region. Peaks and valleys in
the border of the region will cause the area to increase after
closing, while it will decrease after opening (i.e., Aclosed ≥
Aopened); therefore, regions with very irregular borders will
have a greater difference between these two values, and the
feature value will be greater. Smaller feature values then
correspond to regions with borders which do not feature
sharp peaks and valleys. An example region is shown in
Fig. 2a.

The second morphological feature compares the length
of the region’s perimeter before and after eliminating high-
frequency components in the Fourier space, and normalizing
the difference:

fB2 =
|Pinitial − Preconstruction|

Pinitial
, (2)

where each P is the perimeter of the region denoted by
its subscript. Since high-frequency components capture rapid
changes in the shape of the region, this feature will be greater
for regions with rapidly-varying boundaries than for those

Fig. 3: An example patient case with contours for the prostate
gland (blue), non-cancerous regions (green), and cancerous
tumor region (yellow) overlaid on the apparent diffusion
coefficient (ADC) map of the prostate gland. Note that
the yellow and green regions exhibit similar ADC values,
indicating that ADC alone is insufficient for delineation
between cancerous tumors and non-cancerous regions.

with smooth, slowly-varying boundaries [13]. An example
region is shown in Fig. 2b.

III. EXPERIMENTAL RESULTS

Clinical multiparametric MRI was acquired from five
patients (ages 54-81, median 63). Informed consent was
obtained from all patients, and approval for this study was
obtained from the ethics review board of Sunnybrook Health
Sciences Centre. All acquisitions were made at Sunnybrook
Health Sciences Centre, in Toronto, using a Philips Achieva
3.0 T machine with a Display Field Of View (DFOV) of
20× 20 cm2, resolution of 1.5625× 1.5625× 3 mm3. Echo
Times (TE) were 61 ms and Repetition Times (TR) were
between 6173 ms and 6693 ms, with a median of 6173 ms.
A radiologist with 18 and 13 years of experience interpreting
body and prostate MRI, respectively, manually confirmed
twenty-five regions as cancerous. Figure 3 shows an example
patient case with contours drawn around cancerous and non-
cancerous regions for the sake of illustration. Both cancerous
and non-cancerous regions in this image exhibit similar ADC
values, making classification using ADC value alone prone
to error.

Region labels were used as ground truth to train Naive
Bayes classifiers in a leave-one-out cross-validation scheme.
Each region was held out while the remaining regions were
used to train a classifier, which was then used to predict the
held-out region’s label. Classification performance was as-
sessed by evaluating the accuracy, sensitivity, and specificity
of these predictions.

A. Feature model performance

The performance of each feature set on the training and
classification process described above are shown in Figure 4.
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Fig. 4: Classification performance (accuracy, sensitivity, and
specificity) of textural and morphological features separately.

Fig. 5: Classification performance (accuracy, sensitivity, and
specificity) of textural features augmented with morpholog-
ical features

In addition to the T2w-based textural features, a set of similar
texture features was computed using ADC intensity values.
Although the ADC-based textural features achieve slightly
higher accuracy compared to the T2w textural features, they
suffer from a drastic loss in sensitivity.

The benefit of adding high-level morphological features
to construct hybrid textural-morphological feature models
is clear from Figure 5. Performance of textural features is
improved with the addition of the morphological features,
whether textural features are computed on T2w or ADC
images. Therefore, in addition to being easier to interpret
by radiologists, the integration of high-level morphological
features also improved classification performance.

IV. CONCLUSIONS

A novel hybrid feature model was proposed, which departs
from current methods by combining the use of multiparamet-
ric MRI with low-level textural and high-level morphological
properties. This hybrid morphological-textural feature model
appears to offer improved diagnostic power compared to
using texture features alone, as well as being easier to
interpret by radiologists.

A. Recommendations and Future Work

As these results are preliminary, further validation with
larger datasets is warranted. At this point, false positives

and false negatives should be carefully examined in the
feature space to determine if additional intuitive features
might reduce misclassifications. As well, user acceptance
testing in a clinical environment is needed to ensure the
intuitive features correspond with the perception of expert
diagnosticians, and could be used to inform the design of
new intuitive features.
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