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Abstract— Mitotic activity is one of the main criteria that
pathologists use to decide the grade of the cancer. Computerised
mitotic cell detection promises to bring efficiency and accuracy
into the grading process. However, detection and classification
of mitotic cells in breast cancer histopathology images is a
challenging task because of the large intra-class variation in
the visual appearance of mitotic cells in various stages of cell
division life cycle. In this paper, we test the hypothesis that cells
in histopathology images can be effectively represented using
cell exemplars derived from sub-images of various kinds of
cells in an image for the purposes of mitotic cell classification.
We compare three methods for generating exemplar cells.
The methods have been evaluated in terms of classification
performance on the MITOS dataset. The experimental results
demonstrate that eigencells combined with support vector
machines produce reasonably high detection accuracy among
all the methods.

I. INTRODUCTION

According to the world health organisation, breast cancer
is the most common cancer in women [1]. The gold standard
for breast cancer grading largely remains to be the work
of human experts so far, whereby histopathologists visually
inspect the tissues slides under the microscope and assign a
grade to the slide based on their experience. The grading of
cancer is important, since it represents the aggressiveness of
the tumour. Thus the information provided by the grading
process helps as a guide for the treatment options.

There are different available grading systems, but the
modified Scarf-Bloom-Richardson [2] is the most widely
used tumour grading system for breast cancer. It consists of
three components: nuclear pleomorphism, degree of tubule
formation and mitotic activity. Nuclear pleomorphism is a
measure of the difference in size and shape of nuclei in
the tumour cells compared to the normal cells. Degree of
tubule formation assesses the extent of normal duct structure
in tumour tissue and mitotic activity indicates how fast the
tumour cells are growing. In general, each component is
given a score of 1 to 3 (1 being the best and 3 the worst) and
the scores of all three components are added to determine
the breast cancer tumour grade. The lowest possible score
(1+1+1=3) is given to tumours that all form tubules, have
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well differentiated nuclei and have a low mitotic rate in 10
High Power Fields (HPFs), which are regions of interest of
the cancerous tissue slide examined at high magnification.
The highest possible score is 9 (3+3+3=9) which indicates
high grade tumour. A group of researchers has also shown
that mitotic rate alone can be as predictive as the three factors
combined [3].

A vast majority of the computerised approaches for MC
classification (such as those presented in [4]–[9]) work by
first identifying candidate objects or locations that are then
accepted (or rejected) as MCs based on some similarity cri-
terion [10]. The candidate extraction phase often makes use
of the colour distinctiveness of MCs by building statistical
models [4] or by performing thresholding. This is because the
intensity of MCs is noticeably darker than normal epithelial
nuclei and only comparable to apoptotic, necrotic or com-
pressed (artefact from the tissue preparation) and lymphocyte
nuclei. These local intensity minima detection or pixel-wise
classification methods are sometimes followed by refinement
of the detected regions by morphological operations and/or
active contours segmentation [6], [7]. Khan et al. [4] add an
extra layer of preprocessing where they perform stain nor-
malisation [11] and tumour segmentation [12] to facilitate the
MC detection. In the second stage, more specialised features
ranging from basic features (morphological, geometrical and
textural) to more specialised features (such as those learned
from deep convolutional neural networks) are used to train
a classification framework [4]–[8].

In this paper, we test the following hypothesis: can a cell
in a histopathology image be effectively represented using a
linear combination of some exemplar cells? In other words,
we address the following question: can we extract some
exemplar cells which can be used as a basis for representing
cells? Our test of effective representation is whether or not
the coefficients of a cell represented as a linear combination
of the exemplar cells be used for discriminating between
mitotic and non-mitotic cells in breast cancer histopathology
images? We use a broad definition of exemplar cells in that
the exemplar cells are derived from sub-images consisting of
cell nuclei and surrounding context. In that sense, the closest
work to this one is another approach recently developed
in our group by the name of Cell Words which employs
a discriminative dictionary learning approach to compute
dictionary atoms for minimising the reconstruction error and
maximising the discrimination performance [13].

In a representation framework using exemplar cells for
the purpose of mitotic cell classification, we present a com-
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Fig. 1. Visual appearance of different cells in breast histopathological
images. First 4 images (from left) are mitotic cells and last 4 images are
non-mitotic cell images.

parison between three different approaches for generating
exemplar cells: using the centroids of k-means clustering
on sub-images containing different kinds of cells and their
context, random projection sub-images, and eigencells [14].
We would like to emphasise here that the approach presented
in [14] was tested on stained peripheral blood cells which are
not very different in their appearance and context. In compar-
ison, our case study of cells in breast cancer histopathology
images is quite challenging (see, for example, various kinds
of mitotic cells and non-mitotic cells in Fig. 1).

The remainder of this paper is organised as follows:
Section II presents the methods which include method for
generating candidate patches as well as the three different
methods for generating cell exemplars using visual words,
random projections and principal component analysis. Sec-
tion III describes the experimental framework used to eval-
uate the performance of the the three methods. Section IV
concludes the discussion with some possible directions for
future research.

II. MATERIALS & METHODS

A. Materials

We evaluate our method on the publicly available MITOS
dataset [15] that consists of 50 images corresponding to high
power fields (HPFs) in 5 different breast tissue biopsy slides
stained with hematoxylin and eosin (H&E). More than 325
MCs are visible in the MITOS dataset. Each HPF represents
a 512×512µm2 area, and is acquired using three different
equipment: two digital slide scanners and a multispectral
microscope. We consider images acquired by the Aperio
slide scanner that has a resolution of 0.2456µm per pixel,
Expert pathologists manually annotated all visible MCs.
More details about the MITOS dataset can be found in [15].

We first perform candidate detection (as outlined in section
II-B.1). Next, we divide all the candidate patches into two
sets: Strain and Stest . Both Strain and Stest roughly contain
70% and 30% of total candidate patches respectively. RGB
patches are converted to greyscale before using them as
inputs to the proposed method.

B. Method

1) Candidate Detection: We extract candidate image
patches using intensity thresholding. The positive candidates
(patches that have MC) are segmented based on the ground
truth, where the mitotic cells are marked in yellow. Negative
candidates (patches that do not have MC) are segmented
using intensity threshold for dark areas in the images. All
the areas containing positive candidates are excluded from
the search for negative patches. After the segmentation has
been performed, all connected regions with an area between

10µm2 and 100µm2 are considered as candidates. Lastly, if
centroids of the two candidate MCs are less than 4.5µm (20
pixels) apart, one of the two candidates is removed. A patch
of 121×121 pixels around the centroid of the candidate MC
is extracted.

2) Nuclear Alignment: In order to make the candidate
patches translation and rotation invariant, candidate patch
rotation is carried out to ensure that all the candidate MCs
are aligned at the centre of the patches and have the same
orientation. We use principal component analysis (PCA) to
perform rotation. For this purpose, we first convert a patch
into blue ratio image to get the spatial distribution of nuclear
content of a patch [16]. PCA is then performed on the
coordinates of nuclei pixels, to yield a rotation matrix in the
form of principal component coefficients. In case of multiple
nuclei, only the nucleus closest to the centroid of the image
patch is considered. Finally, a candidate patch of size 51×51
is cropped at the centre of the patch for further processing.
For details of the effect of candidate patch rotation, reader
is referred to [13].

3) Cell Exemplars Generation: Let si ∈ Rn denote a
vector containing grey intensities of a patch i, with n be
the total number of pixels in the patch. Here, we consider
three approach for cell exemplar generation.

Visual Words: In the methodology of bag-of-word
representation [17], image descriptors are first extracted from
each training image. These descriptors often have high-
dimensionality. To handle these descriptors in an economical
way, a small set of exemplars (or visual words) which repre-
sent some common characteristics among the descriptors are
then constructed. Various approaches have been proposed to
construct visual words [18], [19]. One of the most simplest
and commonly used method is k-means clustering algorithm,
in which we use a centroid of each cluster of image descrip-
tors as a visual word representing all the descriptors in the
cluster. An image can then be represented through a feature
calculated based on a set of visual words, which in general
has significantly lower dimensionality as compared to the
original image descriptors.

A set of k visual words {v1, ...,vk}, v j ∈Rn is constructed
from si ∈ Strain using k-means. For each patch i, a feature
vector xi is defined by

xi = [xi,1, ...,xi,k] (1)

where xi, j is the dot product between si patch and the visual
word v j. The value of the dot product can be interpreted as
the similarity measure between two vectors. The greater the
value, the more similar the two vectors.

Random Projection: A random projection is a dimen-
sionality reduction method that project the high-dimensional
data into a low-dimensional subspace using a random matrix.
It has an attractive theoretical property in which the distance
in low-dimension representation of data is well-preserved
and the computational cost involved in the projection is
significantly lower than that of commonly used methods
such as PCA [20]. Random projection method has been
successfully applied to various computer vision tasks such
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Fig. 2. (left) Effect of the number of visual words on the classification performance of the proposed system; (middle) Effect of the number of dimensions
of image features (m) on the classification performance of the proposed system; (right) Effect of the number of principal components on the classification
performance of the proposed system.

as face recognition [21], noise reduction [20], tumour seg-
mentation [22] and object tracking [23]. Let R ∈ Rm×n be a
matrix whose elements are sample from a standard normal
distribution, and its rows are linearly dependent and has
unitary Euclidean norms. Here, m� n is a dimension of a
transformed data. A random projection feature xi of a given
patch si writes,

xi = R× si ∈ Rm (2)

EigenCells: Eigencells are generated using PCA that
projects the data onto a low-dimension orthogonal subspace
such that the correlation between observed variables is
minimised. This results in a new coordinate system where
the first coordinate (the first principal component) lies in
the direction that captures the highest variation in the data.
The variations of the data in the second coordinate and so
on are descending in order. We perform PCA on the grey
intensity descriptors of the whole data set, and use the first
r� n principal components of the projected data xi ∈Rr as
a feature vector.

III. EXPERIMENTAL RESULTS & DISCUSSION

In order to reduce the effect from random partition of Strain
and Stest , we perform 50 repetitions of each experiment. For
each repetition i, we generate the set of candidates for Stest
and count the number of True Positives Nt p,i (i.e. detections
whose centroids are closer than 8µm from the ground truth
centroid), False Positives N f p,i and False Negatives N f n,i. The
total numbers of True Positives, False Negatives, and False
Positives are given by (Nt p = ∑

50
i=1 Nt p,i), (N f n = ∑

50
i=1 N f n,i),

and (N f p = ∑
50
i=1 N f p,i), respectively. Then following perfor-

mance measures are calculated: precision (P = Nt p/(Nt p +
N f p)), recall (R = Nt p/(Nt p + N f n)) and F1-score (F1 =
2PR/(P+R)).

In the experiments, we construct classifiers from linear
support vector machine. A value of a block constraint pa-
rameter which penalises misclassification is set to 1. In Fig.
2, we evaluate the effect of the number of visual words (k),
the dimensionality of random projected feature (m), and the
number of principal components (r) on the performance of
classification models based on cell exemplars generated via
k-means, random projection, and eigencells, respectively.

Fig. 3. Comparative performance of the three cell exemplars.

Generally, the classification performance tends to increase
and converges to some values as the dimensionality of
exemplars increase. This implies that variation of cells is
better captured in high dimensional space. However, the
trend of classification performance of eigencells is noticeably
different from the others as the performance drops down
after some point. This means that after r = 135, the principal
components start to provide more non-discriminative features
among mitotic and non-mitotic classes. This, therefore, re-
duces the discrimination power of the classification model.

Fig. 3 compares the highest classification performance
(f1-score, precision, and recall) of different classification
models. The classification model based on k-means attains
the highest f1-score of 0.588 at k = 96. The model based on
random projection attains the highest f1-score of 0.648 when
m = 800, and the model obtained from eigencells attains the
highest f1-score of 0.778 when r = 135. We can see that
within the methods for exemplar cell extraction, eigencells
yields the best performance with the reasonable number of
principal components. Fig. 4 illustrates cell exemplars from
k-means and eigencells.

IV. CONCLUSIONS

We present a comparison of three distinct methods to
extract exemplar cells which can be used as a basis for
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(a)

(b)
Fig. 4. (a) Top 5 exemplars obtained using kmeans for mitotic (first row)
and non-mitotic class (second row); (b) Top 5 exemplars obtained using
eigencells for mitotic (first row) and non-mitotic class (second row);

representing mitotic cells in breast histopathology images.
Experimental results demonstrate high detection accuracy
when exemplars are generated using principal component
analysis. Potential future directions include extension of the
same paradigm for detecting other types of cells [24] in
differently stained histological images [25].
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