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Abstract—Cellular morphology is widely applied in digital
pathology and is essential for improving our understanding of the
basic physiological processes of organisms. One of the main issues
of application is to develop efficient methods for cell deformation
measurement. We propose an innovative indirect approach to
analyze dynamic cell morphology in image sequences. The
proposed approach considers both the cellular shape change
and cytoplasm variation, and takes each frame in the image
sequence into account. The cell deformation is measured by the
minimum energy function of object alignment, which is invariant
to object pose. Then an indirect analysis strategy is employed to
overcome the limitation of gradual deformation by run length
statistic. We demonstrate the power of the proposed approach
with one application: multi-classification of cell deformation.
Experimental results show that the proposed method is sensitive
to the morphology variation and performs better than standard
shape representation methods.

I. INTRODUCTION

Cellular morphology, including cellular shape and cyto-
plasmic distribution, is a kind of large-scale expression of
the global organizational and physiological state of cells. It
is resulted from the complex interactions involving the cy-
toskeleton, the membrane and membrane-bound proteins, and
the extracellular environment [1]. Cell deformation, namely
cellular morphology variation, takes place during multiple
physiological processes, such as wound healing, the immune
response and cancer metastasis [2]. According to this, cell
morphology has become a standard theory for computerized
cell image processing and pattern recognition [3] [4].

The analysis on static cellular images, such as cell segmen-
tation, cell shape representation, is widely applied to observe
and investigate cellular physiological activity. However, static
images cannot provide information about the dynamic activity.
As a consequence, more and more attention has been paid to
live-cell (2D+t) imaging, since it can provide more information
about cell morphology change, and a greater insight into
the nature of cellular functions [2]. To apply dynamic cell
morphology in practice, computational tools are increasingly
necessary in order to extract information from vast quantities
of data.

Live-cell is a non-rigid body, and it deforms arbitrarily,
subtly and gradually. While the traditional shape descriptors
are efficiently for representing rigid global shape. It is complex
to apply the shape descriptors to analyze live-cell deformation,
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Fig. 1. Results of sequence scale normalization; first two columns are the
original frames of two videos, the following two are the zoomed frames. The
rows are the 1st, 51st, 101st and 151st frames of the image sequences.

since their invariance of pose elements (translation, rotation
and scale) is limited [5]. And shape descriptors disregard
the alteration of gray value, in other words, the cytoplasm
variation is ignored. In addition, the cell deformation in
successive frames is too tiny for shape descriptors to measure.

In this paper, we present an innovative approach to describe
the cell deformation by the minimum energy function of object
alignment, which captures image dissimilarity without the
influence of object pose, and takes full use of the shape change
and the cytoplasm variation. Besides, an indirect strategy using
run length statistic is introduced to overcome the problem of
tiny deformation, and consider the entire frames in a video.
The results of our experiment show that the proposed method
makes a significant improvement in multi-classification of cell
deformation.

II. METHODS

A. Scale normalization in sequences

Cells have diverse size, so it is essential to eliminate the
influence of scale during the analysis of cell deformation.
To achieve scale invariance, the conventional shape represent
methods normalize the descriptors by eliminating the infor-
mation of size [5]. This procedure is suitable to static image
analysis. Nevertheless, cell deformation is also accompanied
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with cellular size change. There is no wonder that the infor-
mation of deformation in image sequence is deserted with the
size normalization framework of shape representation.

For the application of image sequence, our analysis ap-
proach begins with sequence scale normalization. The se-
quence scale normalization deems the cell size in the first
frame of each video as an original parameter. The size scale
of a video is captured from the ratio of the average of original
cellular area in all frames and the corresponding original
parameter. The frames in the identical video are zoomed by the
size scale of the video (Fig.1). In this way, the influence of cell
scale is eliminated; meanwhile the information of deformation
is preserved. The sequence scale normalization is given by

a′in =
A

ai1
ain (1)

where ain is the crude cell size, and a′in is the regularized
cell size, A represents the average of the original parameters.
n and i refer to the numerical order of the videos and the
frames respectively.

B. Object alignment

Cell deformation consists of shape change and cytoplasm
variation. Therefore it is hard to guarantee the homogeneity of
shape change and cytoplasm variation. Object alignment aims
to recover a global transformation, such as rigid, similarity, or
affine transformation, that brings the pose of a source object
as close as possible to that of a target object. The most notable
characteristics of object alignment are its global concern and
robustness to object pose. This inspires us to introduce object
alignment into cell deformation analysis.

Energy function is constantly employed by object alignment
methods, which achieve alignment by minimizing the energy
function. The main idea of our method is to use the minimized
energy function to reveal the morphology change. We modify
an efficient region object alignment method to cope with gray-
scale image, and introduce the energy function to measure the
cell deformation [6]. As the scale is already normalized, let
pose parameter P =

[
a b θ

]T
with a , b , θ corresponding

to x , y-translation, and rotation, respectively. The transforma-
tion of image is defined as

Ĩ (x̃, ỹ) = T [I (x, y)] (2)

where  x̃
ỹ
1

 = T [P]
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y
1
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0 1 b
0 0 1



×

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 x
y
1


(3)

I (x, y) and Ĩ (x̃, ỹ) represent original image and transformed
image respectively. The transformation matrix T [P] maps the
coordinates (x, y) into coordinates (x̃, ỹ).

The source image and target image are aligned by using
gradient descent to minimize the following energy function:

E =

∫∫
Ω

(
Ĩs − It

)2

dA∫∫
Ω

(
Ĩs + It

)2

dA
(4)

where Ω denotes the image domain. It is the target image,
and Ĩs is the transformed source image.

The gradient of E taken with respect to P is given by

∇PE =
2
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Ĩs − It

)
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(5)
where ∇PĨs refers to the gradient of the transformed image
taken Ĩs with respect to the pose parameter P.

We treat two cell images as the source and the target object
respectively. The pose of the source cell is brought closest
to the target cell, when E achieves its minimum. By now, E
reveals the global difference between the two cells, without the
influence from the object pose. Thus Emin, which is defined
as the minimum of E, is used as the value of the dissimilarity
between cells.

C. Run Length Statistic

Because the live-cell morphology deforms arbitrarily, subtly
and gradually, it has limitations on measuring the deformation
between successive frames. The conventional analysis strategy
is to interval sample the image sequences [7]. Nevertheless,
this framework greatly reduces the data volume, for only a
few frames of the video are used. Besides, the information
of deformation in the interval is dumped. To address this
problem, we presented a modified strategy. Run length statistic

Fig. 2. Flowchart of Run Length Statistic
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(a) GFD (b) Zernike moments

(c) Object alignment (d) Run length statistic

Fig. 3. Results of different methods; (a) (b) are the mean Euclidean distance of GFD and Zernike moments, (c) (d) are the mean Emin and run length
of object alignment. In contrary to other results, the higher rejection cells have shorter run length. The videos are arranged in descending according to their
values.

is applied to take the full use of all frames by indirectly
comparing their differences.

The modified strategy begins with the conventional method,
a sequence of dissimilarity is captured by interval sample. To
minimize the impact of outliers, the dissimilarity sequence is
represented by its median. Then the average of the medians
of the entire videos is used as a threshold, which is defined as

T=

∑
median [Ei]

N
(6)

where Ei represents the dissimilarity sequence of the videos,
N is the total number of the videos.

Then the first frame is regard as an initial target frame.
The source frame is the following frame, which is closest
to the target one and satisfies Emin of target and source
frame not less than the threshold. The run length between
target and source frame is recorded as the value of their
dissimilarity. Then the former source frame is employed as
the new target frame. The last procedure is iterated until the
end of the video. Finally, the mean of this run length statistic
sequence of dissimilarity is regarded as the measurement of

cell deformation of the corresponding video. It is given by

L = D (7)

where

D = {d|Emin (Fn, Fn+d) ≥ T, andEmin (Fn, Fn+d−1)<T}
(8)

Fn represents the frames, d is the run length between target
frame and source frame, D refers to the sequence of d.

Fig.2 illustrates the flowchart of run length statistic. L is
used as the final measurement of the morphology variation.
The entire frames are now taken into account to analyze the
cell image sequences.

III. EXPERIMENTS AND RESULTS

A. Experimental Data

To evaluate the performances of the proposed approach,
we conducted the experiment on a group of data, which
consists of 100 lymphocyte video clips (20-30 seconds) taken
from the cooperation hospital−−Beijing You’an Hospital. The
lymphocytes were obtained from blood samples of 100 mice
undergoing back skin transplantation (age: 6-8 weeks, weight:
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TABLE I
MULTI-CLASSIFICATION RESULTS OF CELL SEQUENCES USING LVQ.

Method TrPr(%) TePr(%) TrRe(%) TeRe(%) TrF(%) TeF(%)

GFD 69.76 62.78 66.67 57.69 66.17 56.42

Zernike moments 71.95 67.33 64.58 63.46 62.25 58.34

Object alignment 82.43 78.41 79.17 76.92 76.24 73.53

Run length statistic 85.19 83.56 85.42 84.62 84.76 83.91

20-22 g) collected from the tail 7 days after the skin transplant.
Clean healthy Balb/c male mice and C57BL/6 male mice
are used as the hosts and the donors. The video clips were
observed with phase contrast microscopy (Olympus BX51,
0.3 µm resolution) at a magnification of 16 × 1000. The
video clips are divided into four sets (no rejection, slight
rejection, moderate rejection and drastic rejection) by experts
and relevant researchers according to the cell deformation.

B. Results and Discussion

The experiment is conducted on multi-classification of im-
mune cells, and the proposed method is compared with generic
Fourier descriptor (GFD) and Zernike moments, two of the
most efficient shape descriptors [1] [5]. The performance of
object alignment without run length statistic is also shown in
the results. For the shape descriptors, the origin of coordinates
is set at the centroid of the object to get shift invariance.
Since in our application the cellular area has already been
normalized, we do not normalize the coefficients of shape
descriptors. The Zernike moments is calculated to 30 orders,
which is sufficient to reproduce most shapes. The results of all
the celluar data are demonstrated in Fig.3. Finally, Learning
Vector Quantization (LVQ) was then applied to classify these
four categories, where 12 cellular data of each group is utilised
as train data, and the else data is test data. Table I shows the
comparison results of mean recognition precision (TrPr, TePr),
recall rate (TrRe, TeRe) and F-score (TrF, TeF) of training and
testing for these methods.

It can be seen in Fig.3, the cells in groups of moderate
rejection and drastic rejection can be more clearly identified
than those in groups of normal and slight rejection by each
of the methods. This is due to not only cellular shape but
also cytoplasm varies immensely in the condition of intense
rejection. On the other hand, the cells under slight rejection
are confused with the normal cells in the results of GFD and
Zernike moments. The gentle cellular shape change makes
the shape descriptors powerless. Not taking the cytoplasm
variation into account causes their poor performance on the
classification of normal and slight rejection cells.

As a consequence of considering both the cellular shape
change and the cytoplasm variation, the proposed method
performs effectively on the classification of cells in the four
levels. Comparing with only using object alignment, the strat-
egy of run length statistic shows an outstanding performance.
The gaps between different groups in the result of run length
statistic are more conspicuous than other results. The indirect

strategy using run length statistic takes full use of the entire
information of cell deformation by considering each frame in
the image sequence. As seen in Table I, our method makes
a significant improvement of multi-classification of cells in
different rejection levels. The performance of the proposed al-
gorithm overcomes the standard shape representation methods
in precision, recall rate and F-score.

IV. CONCLUSIONS

In this paper, we have proposed a novel and efficient
approach for cell deformation measurement. Such an approach
is applied by aligning frames in cell image sequences, and
the indirect analysis of the dissimilarity between successive
frames. It measures cell deformation accurately by taking the
cell shape change and the cytoplasm variation into account.
Meanwhile it takes full use of each frame in the image se-
quence. The invariance to object pose also enables the method
a satisfying performance. Compared with standard shape rep-
resentation methods, our algorithm performs much better on
multi-classification of the cellular morphology variation in
different rejection levels, and can provide more information
of the global organizational and physiological state of cells.
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