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Abstract— Chronic stress detection is an important factor
in predicting and reducing the risk of cardiovascular disease.
This work is a pilot study with a focus on developing a method
for detecting short-term psychophysiological changes through
heart rate variability (HRV) features. The purpose of this pilot
study is to establish and to gain insight on a set of features
that could be used to detect psychophysiological changes that
occur during chronic stress. This study elicited four different
types of arousal by images, sounds, mental tasks and rest, and
classified them using linear and non-linear HRV features from
electrocardiograms (ECG) acquired by the wireless wearable
ePatch R© recorder. The highest recognition rates were acquired
for the neutral stage (90%), the acute stress stage (80%) and the
baseline stage (80%) by sample entropy, detrended fluctuation
analysis and normalized high frequency features. Standardizing
non-linear HRV features for each subject was found to be
an important factor for the improvement of the classification
results.

I. INTRODUCTION

Chronic stress is a psychophysiological state that occurs
due to excessive levels and duration of stress. The human
body’s built-in endocrine response to acute (short-term)
stress is essential for adaptation to changing situations such
as the well known ”fight or flight response” in times of
perceived danger, in cases of anxiety or in emotional tension.
Chronic stress can be broadly described as a prolonged
exposure to an environmental demand (stressor) that exceeds
the body’s ability to react to a situation [1]. This overload
on the endocrine system can increase risk of hypertension
and cardiovascular diseases which are commonly linked to
chronic stress. Sympathetic stimulation during acute stress
typically increases cardiovascular properties of chronotropy
(heart rate), inotropy (contractility), lucitropy (relaxation)
and dromotropy (conduction velocity) while parasympathetic
stimulation tends to decrease these same properties in non-
stress situations [2].HRV, which represents the change in
duration between heart beats over time, has been commonly
used to track changes in cardiovascular activity which reflect
the balance between the sympathetic and parasympathetic
nervous systems [3].
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Research in applying HRV analysis to the field of chronic
stress is limited due to the lack of a ”Golden Standard” and
the lengthy experimental set-ups. The current methodologies
for chronic stress diagnosis still rely heavily on questionnaire
assessments and sympathetic tone measures such as cortisol
or norepinepherine spillover in the blood, which are not
considered robust enough to be golden standards [4], [5].
A methodology for detecting psychophysiological deviations
from the baseline over long periods, as in the case of
chronic stress, based on HRV would be a novel approach.
The long term motivation and vision for this project is the
implementation of such a methodology to monitoring chronic
stress and thus reducing the risk of disease.

A pilot study was performed with its goal being to develop
a linear and non-linear HRV feature set for acute stress
classification. The purpose of developing this methodology
is for its future application in experiments involving chronic
stress. It is not expected that the same HRV features will
be relevant in acute and chronic stress detection, but the
availability of a large feature set will allow the identification
of the relevant features in each respective scenario. This
paper will cover a brief review of the current research in
acute stress classification, the methodology used for acute
stress elicitation and HRV analysis and the classification and
discussion of these results.

A. HRV Parameters Used in Research

The most common ECG features that are used in stress
classification in literature are based on either linear HRV
features (time and frequency domain) or non-linear HRV
features. Significant decreases in Low Frequency (LF) and
High Frequency (HF) HRV components and significant in-
creases in the LF/HF HRV ratio during induced mental
stress compared to a rest period were found in the the
work of Hjortskov et al. [6]. Valenza et al. [7] compared
linear feature sets with non-linear feature sets to classify
four emotional levels. The non-linear features attained a
significant increase in classification rate between different
emotions. Rates over 90% were achieved with a quadratic
discriminant Bayesian classifier and feature reduction by
means of principal component analysis. Mellilo et al. [8]
applied a non-linear HRV feature set to classify stress in
students during an exam situation. Classification rates of
90%, 86%, and 95% for accuracy, sensitivity and specificity,
respectively, were achieved when using the Poincaré plot and
approximate entropy parameters.
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Fig. 1. ePatch R© ECG recorder correctly placed on sternum.

II. ACUTE STRESS CLASSIFICATION
METHODOLOGY

Videos composed of pictures and sounds, a mental stress
task stage using a Stroop test, and a rest stage were used
to elicit varying degrees of short-term stress/arousal in the
subjects. The images and sounds used in this study were
from the recognized International Affective Image System
(IAPS) [9] and the International Affective Digital Sounds
(IADS) [10] databases, respectively. The sounds and images
were graded based on valence (unpleasant to pleasant) and
arousal (weak to strong) on a scale of 1 to 9, respectively.

A. Test Subjects

The subjects used for this acute stress study were 10
volunteer students (8 male) from the Technical University
of Denmark, aged 22 to 26 years, that were deemed to be
in good physical health, mental health and did not smoke.
The subjects prepared themselves for the experiment by not
exercising or consuming caffeine or alcohol for 12 hours
before the experiment.

B. Recording and Measurements

Portability, wearability and comfort are key factors in
the potential monitoring of long term stress and therefore
the device chosen for this study was the ePatch R© wireless
wearable two-channel ECG recorder from DELTA Danish
Electronics, Light and Acoustics. An example of the ePatch R©

placement on the sternum can be found in Fig. 1. The ECG
was sampled at 512 Hz on both channels. Only the ECG
acquired on channel 1 was used for analysis.

C. Experimental Procedure

The experimental procedure was broken down in four
main stages: acute stress video, mental stress challenge,
neutral video and a post-experimental baseline period. The
experiment was precluded by a 10 minute period where ECG
was recorded with the ePatch R©. The subjects were given very
little information about what to expect in the study as to
not compromise the effects. Due to this reason, the baseline
period was chosen to be at the end of the experiment.

1) Acute Stress Video: The lights were turned off and
the window blinds were closed. The subject was seated in
front of a computer screen and was given in-ear headphones.
A video composed of images and sounds that were graded
with a low valence and high arousal was presented to the

TABLE I
HRV ANALYSIS

Type Feature Description

Linear Time Domain Mean, SDNN, SDSD, NN50,
pNN50

Frequency Domain Total Power, VLF, LFnorm,
HFnorm, LF/HF

Non Linear

Approximate Entropy AppEn(0.2), AppEn(rchon)

Sample Entropy SampEn(0.2),
SampEn(rchon)

DFA α1, α2
Correlation
Dimension D2

Poincaré Plot SD1, SD2, SD1/SD2

subject for 6 minutes. The images and sounds changed every
6 seconds.

2) Mental Stress Challenge: The subject was assigned a
Stroop test [11] as a mental task for a period of 6 minutes.

3) Neutral Video: A video composed of neutrally rated
images and sounds was presented to the subject for 6
minutes. The images and sounds changed every 6 seconds.

4) Baseline from Recovery: After the neutral video, the
lights were turned on and the subject was told that the
experiment was over and that there would be a 10 minute
rest period.

D. Analysis

The recorded ECGs were segmented into the four experi-
mental stages: acute stress video, mental stress task, neutral
video and a baseline (first 6 minutes of recovery period).
These added up to 40 ECG segments, all 6 minutes long. The
QRS detection was performed with an in-house algorithm.
The HRV was calculated from the R-R (interbeat) time
differences and then due to its irregular time sampling, it
was resampled (HRVr) by interpolation at 8 Hz.

For each subject, p, the non-linear features were standard-
ized according to Equation 1, where xi,p is the feature value
of subject p in stage i, and x̄p and xstd,p is the mean and
standard devation of x for subject p within all four stages.

xstand(i,p) =
xi,p − x̄p
xstd,p

for i=1,2,3,4 (1)

The individual linear and non-linear parameters are de-
scribed in the following subsections. A summary of all
parameters can be found in table I and a flow chart of the
data collection, signal processing and classification stages
can be found in Fig. 2. All analysis was done using Matlab
7.10.0.499 (R2010a) and reference Matlab code for the non-
linear functions can be found in the GitHub repository [12].

1) Linear Features: The time domain features were cho-
sen to be the mean, standard deviation (SDNN), standard
deviation between consecutive interbeat differences (SDSD),
number pairs of adjacent interbeat intervals differing by more
than 50 ms (NN50) and the percentage of NN50 from all the
interbeat intervals (pNN50) [3].

The frequency domain features computed from the HRVr

power spectrum density (PSD) were the normalized LF
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Fig. 2. Flow chart of data acquisition (black), signal processing (blue) and classification of experimental stages (green). Performance of the Naive Bayesian
classifier was determined using the leave-one-out method (leaving out all four stages from one subject as a test and training with the rest).

(0.04-0.15 Hz), normalized HF (0.15-0.4 Hz), LF/HF, Very
Low Frequency (VLF, ≤0.04 Hz) and total power as in
Camm et al. [3]. These power values were calculated by in-
tegrating the power along the respective frequency locations
of the PSD curve.

2) Non-Linear Features: The non-linear methods of anal-
ysis were chosen to be the approximate entropy (AppEn) [13]
and sample entropy (SampEn) [14], Detrended Fluctuation
Analysis (DFA) [15], Correlation Dimension (D2) [8] and
Poincaré plot analysis [16].

The AppEn and SampEn are both measures that estimate
the changing complexity of a system. For all entropy cal-
culations, an embedding dimension m = 2 was used, while
the use of two r (radius threshold) values was tested. The
r values used were r0.2 = 0.2SDNN (widely accepted
as an appropriate r value) and the optimized rchon value
suggested by Chon et al. [17]. The HRVr data was used for
the AppEn calculation and the original HRV data was used
for the SampEn calculations.

DFA is a measure of long-range correlations in a time-
series which in the case of HRV analysis, provides in-
formation about long-range correlations between interbeat
differences by disregarding trends and nonstationarities in
the data. Details on DFA computation can be found in [15].
The two slope parameters from the DFA log-log plot, α1
and α2, which represent short and long term fluctuations,
respectively, were used.

The D2 is a measure of the dimensionality of the space
a set of random points occupy in space. Details on D2
computation can be found in [18]. The original HRV series
was used for the computation with an embedding dimension
m = 1, a delay τ = 1, for radii thresholds from 0.001 to 2
by steps of 0.0001, and taking the slope from the range -8
to -5.

A Poincaré plot is a common method of adjacent in-
terbeat interval analysis. The plot is formed by a scatter
plot of RRn+1 vs RRn, which compares the relationship
between adjacent RR interval times. The most common
method of quantifying the resultant plot is ellipse fitting
and finding the standard deviations, SD1 =

√
0.5 · SDSD2

and SD2 =
√

2 · SDNN2 − 0.5 · SDNN2 [16], which are
parallel and perpendicular, respectively, to the line of identity.
The SD1/SD2 ratio was also used.

E. Feature Selection and Classification

The classification was done using a Quadratic Discrimi-
nant Naive Bayesian classifier. Feature selection was done
using a forward sequential search with 100 Monte Carlo

TABLE III
CONFUSION MATRIX OF NAIVE BAYESIAN CLASSIFIER USING THE

LEAVE-ONE-OUT METHOD FOR 4-WAY DIFFERENTIATION OF STAGES IN

EXPERIMENTAL SET-UP USING THREE FEATURES (HFNORM,
SAMPEN(0.2) AND α1 - MCR = 20%)

Stage Acute Mental Neutral Baseline
Acute 80% 10% 10% 0%

Mental 20% 70% 10% 0%
Neutral 0% 10% 90% 0%
Baseline 0% 0% 20% 80%

repetitions. The performance parameter of the feature se-
lection process was finding the minimum misclassification
rate (MCR). The feature selection process was done with the
parameters from 8 experimental segments held out (2 from
each type). The feature selection process was performed 10
times and the features that occurred most often were included
in a reduced feature set. The reduced feature set was then
applied to a leave one subject out cross-validation, where all
experimental stages from one subject were used as the test
while the rest were used as training. An exhaustive approach
with the reduced feature set was taken to find the best optimal
feature combination which is presented in the results.

III. RESULTS

Classification of the four experimental stage using the
aforementioned HRV parameters was performed. The most
commonly selected features in the feature selection process
can be found in Table II with the mean and standard deviation
values of all subjects in each of the four stages. The feature
set that produced the lowest MCR (20%) was composed
of HFnorm, SampEn(0.2) and α1. The results acquired by
classification using those three features can be found in the
confusion matrix in Table III and Box and Whisker plots of
the feature values in Fig. 3. The highest recognition rate is
90% for the neutral stage and the lowest recognition rate is
70% for the mental stage. The overall classification rate is
80%.

IV. DISCUSSION

The classification shows high recognition of the neutral
video (90%), baseline (80%) and acute video (80%) (Table
III). The mental stress task is recognized 70% of the time
and is misclassified either as the acute stress or neutral video
stages. An interesting observation in the classification is that
the mental task, acute stress video and neutral video are never
misclassified as baseline. Baseline was misclassified 20% of
the time as neutral, but that seems to be due to an outlier case
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Fig. 3. Box and Whisker plot of the HFnorm, SampEn(0.2) and α1 features used of classification for four experimental stages.

TABLE II
MEAN AND STANDARD DEVIATION VALUES OF SUBJECTS FOR EACH EXPERIMENTAL STAGE OF MOST COMMON FEATURES PRODUCED FROM THE

FEATURE SELECTION PROCCESS.

Stage LF/HF HFnorm AppEn(0.2) SampleEn(0.2) SampleEn(rchon) α1 D2
Acute 1.13 +/- 0.67 0.48 +/- 0.13 0.65 +/- 0.34 0.52 +/- 0.52 -0.33 +/- 0.70 -0.94 +/- 0.34 0.25 +/- 0.74
Mental 1.38 +/- 0.57 0.39 +/- 0.09 0.59 +/- 0.42 0.64 +/- 0.39 -0.61 +/- 0.44 -0.39 +/- 0.40 0.56 +/- 0.72
Neutral 1.84 +/- 1.21 0.39 +/- 0.16 0.08 +/- 0.53 0.10 +/- 0.57 -0.04 +/- 0.65 0.14 +/- 0.48 -0.05 +/- 0.84

Base 3.5 +/- 1.39 0.23 +/- 0.06 -1.31 +/- 0.10 -1.25 +/- 0.31 0.98 +/- 0.79 1.20 +/- 0.27 -0.76 +/- 0.72

that can be seen in the baseline stage of SampEn(0.2) and
α1 Box and Whisker plots in Fig. 3. Aside from this outlier
in the baseline stage, it appears to be the most differentiable
for all three features and also has a much smaller variability,
which emphasises the importance of a good baseline.

Two important adjustments were made in the process of
improving the classification. The first was the inclusion of
the data from the baseline stage, which was at first not
included, and the second was the standardization of the non-
linear parameters. Before standardization, features among
different subjects could all change proportionally between
experimental stages, but have different absolute values or
step sizes. Standardizing allowed for better inter-subject
comparison and better overall classification results. Standard-
ization was possible because all subjects underwent the same
experimental procedure, with the same stages. The baseline
ECG segment was also a key factor in the standardization
procedure because once the baseline was added, a significant
increase in classification rates was achieved.

Current research is focusing on adding more subjects to
the study to increase statistical significance and also apply-
ing this methodology and feature set to determine relevant
features in longer term chronic stress situations.
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