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Abstract— The forced oscillation technique (FOT) is a non-
invasive method to measure the respiratory impedance Z,
defined as the complex ratio of transrespiratory pressure P
to the airflow at the airway opening Q as a function of fre-
quency. FOT determines Z by superimposing small amplitude
pressure oscillations on the normal breathing and measuring
the resulting air flow. In this work a new approach for the
analysis of the respiratory impedance Z at low frequencies
(0.1-5 Hz) during spontaneous breathing is presented. When
the respiratory impedance is measured in frequency ranges
that overlap with the frequency of spontaneous breathing (0.1-
1 Hz), the measured air flow will contain both the breathing of
the patient and the response of the respiratory impedance to
the pressure oscillations.

A nonlinear estimator is developed which is able to separate
the breathing signal from the respiratory response in order
to obtain the respiratory impedance. The estimated results
are used to obtain accurate estimates of airway and tissue
components of a constant phase model.

I. INTRODUCTION

Measurement and estimation of the respiratory impedance
Z by means of the forced oscillation technique (FOT) has
been a widely investigated topic for several years [1]–[3].
The most commonly used application of FOT is the measure-
ment of the input impedance of the respiratory system. This
is defined as the complex ratio of transrespiratory pressure
P to the airflow at the airway opening Q as a function of
frequency

Z(ω) =
P(ω)

Q(ω)
(1)

with ω = 2π f the angular frequency. The respiratory
impedance gives powerful insight into the mechanical phe-
nomena of the lungs [4]. Compared to more widely used
lung function tests, it has been shown that FOT can provide
unparalleled information on the respiratory mechanics [1].
Most FOT applications determine the respiratory impedance
outside the frequency range of spontaneous breathing [5],
[6]. Mostly pistons or loudspeakers based measurement
systems are used to determine the respiratory impedance at
frequencies between 4 and 50 Hz [7], [8]. However, it has
been shown that lower frequency ranges (below 10 Hz) are
most sensitive to normal physical processes and pathologic
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Fig. 1. Schematic representation of the measurement of the respiratory
system. The respiratory system is approximated by a linear time invariant
admittance Y . A pressure signal p(t) is used to excite the respiratory
admittance. The total measured air flow u(t) contains both the response
of the respiratory system q(t) and the breathing signal br(t).

structural alterations [1].
The proposed method was designed to be used together with
the fan-based FOT device described in [9]. This device super-
imposes small amplitude pressure oscillations (in the order of
0.1 kPa) on the tidal breathing and measures the resulting air
flow. The imposed pressure is a broadband signal exciting a
range of frequencies between 0.1 and 5 Hz. The main benefit
of using small pressure oscillations as excitation signal is
the clinical applicability of the measurement procedure. The
patient can continue tidal breathing and will not be impeded
by the measurement which eliminates the need for patient
training before a measurement can be performed.

The resulting air flow will not only contain the response of
the respiratory impedance but will also be strongly disturbed
by the breathing of the patient. The breathing signal has large
amplitude contributions at low frequencies (0.1-1 Hz). This
frequency overlap with the frequency range of interest jeop-
ardizes the analysis of the respiratory impedance. Therefore,
a novel technique was developed to eliminate the breathing
signal without losing the information about the respiratory
response.

The paper is organized as follows: In section II, the
approach and the models used to estimate FOT measure-
ments are presented. In section III, the estimation algorithm
and optimization techniques are discussed. In section IV,
a simulation developed to mimic real measurements using
measured breathing patterns and using a constant phase
impedance model is presented. Finally, in section V, the
results of the optimization techniques on these simulations
are discussed. Conclusions are drawn in section VI.

II. MODELING OF BREATHING AND LUNG RESPONSE

Fig. 1 shows a schematic representation of the measure-
ment of the respiratory system. A pressure oscillation p(t) is
used as the excitation signal and the resulting air flow q(t) is
considered as the response to this excitation. Therefore the
respiratory admittance Y = Z−1 is considered instead of the
respiratory impedance. The respiratory system is considered
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as a linear time invariant (LTI) system and its response q(t)
is therefore assumed to be independent from the breathing
pattern. This assumption is made to ease the interpretation
of the measured signals.

Using this approximation, the resulting air flow u(t) can
be considered as the sum of the respiratory response q(t),
and the breathing signal br(t).

u(t) = q(t)+br(t) (2)

Since q(t) and br(t) contain energy in the same frequency
range, common filtering techniques can not be used to
separate both signals. Therefore, a nonlinear model for the
breathing signal is proposed additionaly to a linear model of
the respiratory response.

A. Model for breathing

The breathing signal is modeled as a sum of H harmon-
ically related sine waves with a nonlinearly varying phase
[10]. This leads to the model

br(t,θbr) =
H

∑
h=0

Ah(t)cos(hφ(t))+AH+h(t)sin(hφ(t)) (3)

A varying phase

φ(t) = 2π fbr

(
t +

L

∑
l=1

Bl cos(
2πlt

T
)+BL+l sin(

2πlt
T

)

)
(4)

is introduced because the frequency of the breathing fbr is
not perfectly constant. The phase φ(t) is written as the sum
of a fixed frequency contribution 2π fbrt and a sum of L
harmonically related sinewaves with fundamental frequency
1/T , with T the duration of the measurement. Furthermore,
the amplitudes of the sine waves are modeled as polynomials
of order M to cope with changing breathing amplitudes
during the measurement:

Ah(t) = Ah0 +Ah1t +Ah2t2 . . .+AhMtM h = 1 . . .2H (5)

All model parameters are collected in the vector

θbr = [A00, . . .A0P, . . .A2H0, . . .A2HP,B1, . . .B2L, fbr] (6)

B. Model for response of Y

The pressure excitation signal p(t) is a random phase
multisine described by

p(t) =
1√
Nexc

Nexc

∑
k=1

Pk sin(2πk f0t +ϕk) (7)

with f0 the frequency resolution of the signal, Nexc ∈ N
the number of frequency components, and Pk the amplitude
spectrum of the k-th frequency line. The phases ϕk are drawn
from an independent uniformly distributed random process
on [0,2π) [11].

The steady state response of the respiratory admittance
excited by (7) is a sum of harmonically related sines and
cosines on the excited frequencies:

q(t,θq) =
Nexc

∑
k=1

αk sin(kω0t)+βk cos(kω0t) (8)

with ω0 = 2π f0 the angular frequency and where

θq = [α1,β1, . . .αNexc ,βNexc ] (9)

represents the harmonic signal parameters of the response of
the respiratory admittance. This leads to a model which is
linear in the parameters (8) since the excitation frequencies
k f0 are known.

III. ESTIMATION ALGORITHM

The model of the measured air flow u can be represented
as

u(t,θu) = q(t,θq)+br(t,θbr) (10)

where θu represents the parameters of both the breathing
signal and the respiratory response

θu = [θbr θq] (11)

The model (10) is used to minimize the least squares cost
function

V (θu) =
1
N

N

∑
n=1

(u(tn)−u(tn,θu))
2 (12)

over θu with N the number of measured time samples of the
measured air flow signal u(t).

Since the model represented in (10) is nonlinear in θbr,
good starting values are mandatory for the nonlinear opti-
mization. The fundamental breathing fbr is initially estimated
by use of the Interpolated Fast Fourier Transform (IFFT)
as described by Grandke [12]. Initial estimates for the
remaining nonlinear parameters in θbr, are obtained by the
algorithm described in [10].

The parameter set θu is then estimated using a Levenberg-
Marquardt algorithm (LMA) to determine the minimizer of
the nonlinear least squares problem [13]. The convergence of
this algorithm is strongly dependent on the condition number
of the jacobian matrix J with

J[n,i] =
∂y(tn,θu)

∂θu,i
(13)

for the nth time sample and the ith parameter of θu. To
improve the condition number of J, the time axis is rescaled
by use of Legendre polynomials. Another influence on the
condition number is the order for the model of br(t),
determined by the parameters H, L and M in (3). High values
for L and M strongly deteriorate the condition number which
leads to bad estimates for q(t).
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Fig. 2. The amplitude spectra show that the response of the respiratory
impedance Q(ω) has a much lower amplitude than the total output U(ω).
(left): P(ω) ( ) with the excited frequency lines ( ) and (right): Q(ω) ( )
and U(ω) ( ).

IV. VERIFICATION ON SIMULATIONS

A simulation approximating the real FOT measurements
and using real breathing patterns is considered. Fig. 2 shows
the amplitude spectra of P(ω), Q(ω) and U(ω), the fre-
quency domain representations of respectively p(t), q(t) and
u(t), obtained by the discrete fourier transform [11].

The simulation is build up as follows: an excitation signal,
as given in (7), is used as an input to a respiratory admittance
model (Fig. 2 (left)). This excitation signal is realized by
filtering a flat random phase multisine by a 3rd order but-
terworth filter with a cutoff frequency at 1.2Hz. This leads
to a high magnitude in the frequency band of spontaneous
breathing [9]. Since the filtered multisine is used as input
to the respiratory admittance, the phase contribution of the
butterworth filter will not influence the estimation results.

The respiratory admittance Y = Z−1 is modeled by a
frequency-domain variant of Hildebrandt’s stress-relaxation
model (14)

Z(ω) = Raw + jωIaw +
G− jH

ωα
(14)

with

α =
2
π

tan−1(
H
G
) (15)

The model consists of a homogeneous airway compartment
containing an airway resistance (Raw) and inertance (Iaw)
elements leading to a viscoelastic, constant-phase tissue
compartment [1]–[4], [14], [15]. This tissue compartment is
modeled by tissue damping (G) and tissue elastance (H). The
model is compatible with the structural-damping hypothe-
sis which assumes that the ratio of dissipative and elastic
processes is constant with angular frequency ω . Studies by
Hantos and co-workers [3] showed that this model describes
low-frequent respiratory impedance data better than other
viscoelastic models. The values used for Raw, Iaw, G and
H are taken from [2].

The response q(t) is then obtained as the inverse discrete
fourier transform [11] of

Q(ω) = Y (ω)P(ω) (16)

The output of the respiratory admittance is strongly disturbed
by a breathing signal br(t). This breathing signal is obtained
by measurements performed with the device described in [9].

Fig. 3. By use of the LMA, an accurate estimate of Q(ω) on the excited
frequency lines is obtained. The estimation results ( ) correspond to the
simulation data ( ) for Q(ω) (left) and BR(ω) (right).

By measuring the air flow without imposing an excitation
signal p(t), no contribution of the respiratory admittance is
present and hence the resulting air flow equals br(t). This
leads to 60 seconds measurements of br(t) gathered at a
sample frequency of 183 Hz [9].

To illustrate the proposed method, 2 cases are considered:
1) To demonstrate the method in the absence of model

errors, the measured breathing is approximated by a
model as described in (3). In this example, H = 5
breathing harmonics, L = 4 phase harmonics and an
amplitude order of M = 2 is used. To illustrate the
conditions under which the LMA can operate, the
measured input signal P(ω) is attenuated with 26 dB.

2) The method is verified on the measured breathing
without approximation. An optimal model order needs
to be selected during the estimation. The measured
input signal is used without attenuation.

Emphasis is placed on the first case, for which the ampli-
tude spectra of the input P(ω) , the total output U(ω) and the
respiratory response Q(ω) are shown in Fig. 2. Due to the
large amplitude contributions of the breathing, the respiratory
response Q(ω) is deeply hidden in the total output. In
order to obtain an estimate of the respiratory impedance,
the respiratory response Q(ω) needs to be extracted from
the total output spectrum.

V. RESULTS

The estimated BR(ω) and Q(ω) are shown in Fig. 3. Even
though an analysis of Q(ω) was initally jeopardized due to
the breathing influence (Fig. 2), an accurate nonparametric
estimate has now been obtained (Fig. 3).

By use of the ratio between the estimated air flow Q(ω)
and the measured pressure excitation P(ω) at the excited
frequency lines, a nonparametric estimate for Y (ω) and thus
Z(ω) can be acquired. To express the frequency dependence
of Z, resistive R and reactive components X are most
commonly used [1]:

Z(ω) = R(ω)+ jX(ω) (17)

This allows for separation of energy dissipation and energy
storage respectively. The accuracy of the estimate of the
frequency dependent behavior of both R and X over the
whole frequency range of interest can be seen in Fig. 4.
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Fig. 4. Resistance and reactance of simulated ( ), nonparametrically
estimated ( ) and parametrically estimated ( ) respiratory impedance
model.

Raw Iaw G H
cmH2O.s/L cmH2O.s2/L cmH2O/L cmH2O/L

true 2.480 0.016 1.450 7.050
estimate approx breathing 2.475 0.016 1.483 7.024

estimate real breathing 2.680 0.036 1.058 9.015

TABLE I
TRUE AND ESTIMATED DATA OF RESPIRATORY IMPEDANCE MODEL FOR

Raw , Iaw , G AND H . RESULTS FOR BOTH APPROXIMATED BREATHING

(NO MODEL ERRORS) AND REAL BREATHING ARE GIVEN.

Starting from this nonparametric estimate of Z(ω), a
parametric estimate can be obtained using the model pre-
sented in (14). Using the MATLAB function fminunc, a
unconstrained nonlinear optimization is performed in order
to obtain estimates for Raw, Iaw, G and H. The mean of the
values measured from 9 patients in [1] are used as starting
values.The results are depicted in Table I. The method is
first applied on the simulation using an approximation of
the measured breathing signal. In this case, no model errors
are present which leads to accurate estimates of Raw, Iaw, G
and H. To conclude, parametric estimates are obtained for a
simulation using a real breathing signal. This will introduce
modeling errors since the order of the real breathing is
unknown. For the same breathing signal as previously used,
an optimal order is found with H = 5 breathing harmonics,
L = 10 phase harmonics and an amplitude order of M = 5.
Due to the presence of model errors, the accuracy of the
parameter estimates decreases. However, sensible results are
obtained for Raw, Iaw, G and H which illustrates the use of
the method for real breathing signals.

VI. CONCLUSIONS

A new method is presented to measure the respiratory
impedance in the frequency range of spontaneous breathing

in a clinically practical way. The performance of the method
is illustrated with simulations using measured breathing
patterns and pressure oscillations performed with a previ-
ously developed device. It is shown that at low frequencies,
the respiratory response is jeopardized by the breathing
contribution. A nonlinear least square estimator based on
a breathing model with varying amplitude and phase has
been developed. Nonparametric estimates of the respiratory
impedance are obtained after separation of respiratory re-
sponse and breathing. These nonparametric estimates lead to
accurate values of airway and tissue compartment elements.
The experimental verification on measurements performed on
a number of patients is currently ongoing. In future work, it
will be verified if it’s worthwhile to take nonlinear behavior
or time-variation of the respiratory impedance into account.
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