
  

 

I. INTRODUCTION 

 

Abstract— Ovarian cancer, the most fatal of reproductive 
cancers, is the fifth leading cause of death in women in the 
United States. Serous borderline ovarian tumors (SBOTs) are 
considered to be earlier or less malignant forms of serous 
ovarian carcinomas (SOCs). SBOTs are asymptomatic and 
progression to advanced stages is common. Using DNA 
microarray technology, we designed multicategory classification 
models to discriminate ovarian cancer subclasses. 

To develop multicategory classification models with optimal 
parameters and features, we systematically evaluated three 
machine learning algorithms and three feature selection methods 
using five-fold cross validation and a grid search. The study 
included 22 subjects with normal ovarian surface epithelial cells, 
12 with SBOTs, and 79 with SOCs according to microarray data 
with 54,675 probe sets obtained from the National Center for 
Biotechnology Information gene expression omnibus repository. 

Application of the optimal model of support vector machines 
one-versus-rest with signal-to-noise as a feature selection method 
gave an accuracy of 97.3%, relative classifier information of 
0.916, and a kappa index of 0.941. In addition, 5 features, 
including the expression of putative biomarkers SNTN and 
AOX1, were selected to differentiate between normal, SBOT, 
and SOC groups. An accurate diagnosis of ovarian tumor 
subclasses by application of multicategory machine learning 
would be cost-effective and simple to perform, and would ensure 
more effective subclass-targeted therapy. 

Ovarian cancer, the primary cause of death due to 
gynecological malignancies, is the fifth leading cause of 
cancer death in women in the United States. Serous ovarian 
carcinoma (SOC) is the most common histological subtype [1]. 
Serous borderline ovarian tumors (SBOTs), a subtype of 
ovarian-surface epithelial stromal tumors, are considered to 
be an earlier or less malignant form of SOC with a better 
prognosis [2]. However, because early stage ovarian cancer is 
mostly asymptomatic, understanding of the etiology is poor, 
and biomarkers for the disease are unreliable, most patients 
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are diagnosed at the advanced stage [3]. The identification of 
useful molecular biomarkers of early stage ovarian cancer 
would improve screening and diagnosis, potentially 
improving the prognosis of the disease. 

Based on a comparison of gene expression levels, 
microarrays can simultaneously analyze tens of thousands of 
genes on a genomic scale, providing useful biological, 
diagnostic, and prognostic information [4]. The application of 
machine learning and statistical techniques to a microarray 
data set can be used in a variety of class discovery or class 
prediction biomedical problems, including those relevant to 
tumor classification. 

DNA microarray technology with machine learning has 
emerged as a promising tool for accurate diagnosis and 
classification. Machine learning for DNA microarrays 
involves using tumor gene expression data to select a 
discriminative set of genes related to classification, termed the 
learned classifier. A new input data is then screened using the 
machine-learned classifier [5]. For cancer classification, 
several machine learning techniques have been developed on 
the basis of gene expression profiling data. Ovarian cancer 
classification would greatly benefit from this technology 
given its lack of characteristic clinical symptoms. 

The sequential progression of SBOTs to SOCs has not 
been well established, but such carcinomatous changes and 
their associated molecular events are being thoroughly 
investigated [3]. In this study, we developed a multicategory 
classification model for a reliable and discriminative 
diagnosis of ovarian cancer by testing three machine learning 
algorithms for DNA microarray. Furthermore, novel 
biomarkers for classifying ovarian tumor subclasses were 
identified. 

II. MATERIALS AND METHODS 

A. Data Acquisition 
We collected 113 raw DNA microarray data sets on 

ovarian tumor subclasses from the gene expression omnibus 
repository at the National Center for Biotechnology 
Information. The data sets originated from Affymetrix 
HG_U133 Plus 2.0 GeneChips comprised of 54675 probe sets, 
representing 20599 well-characterized human genes. 

We included 22 subjects with normal ovarian surface 
epithelial cells, 12 with SBOTs, and 79 with SOCs [6]-[9]. 
Since SOC is the most common histological ovarian cancer 
subtype [1], we chose to analyze SOC and SBOT (Table I). 

For machine learning, the raw DNA microarray data 
format was converted into the MATLAB data format. In 
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particular, we performed a robust multi-array average 
procedure including log2 transformation and quantile 
normalization. The data were divided randomly into training 
and testing sets. The training set, comprising 66.7% (76 
subjects) of the overall dataset, was used to construct models 
using three machine learning algorithms. The testing set, 
comprising 33.3% (37 subjects) of the overall dataset, was 
used to assess the model’s ability to categorize subjects into 
the normal, SBOTs, and SOCs groups (Fig. 1).  

B. Feature selection 
Feature selection was necessary to reduce the high 

dimensionality of the datasets. Regardless of the classification 
methods, many microarray-based studies suggest that gene 
selection is vital for achieving a high level of generalization 
[10]. Feature selection is used to identify genes that might be 
informative for prediction by statistical and machine learning 
methods [5]. All gene probe sets were ranked by the feature 
selection method according to the calculated weight of each 
gene. We used three feature selection methods: (1) the ratio of 
genes between-categories to within-category sums of squares 
(BW); (2) the signal-to-noise (S2N) scores applied in a 
one-versus-one (S2N-OVO) model; and (3) the S2N scores 
applied in a one-versus-rest (S2N-OVR) model. These were 
chosen because they are widely used in multicategory 
classifications and represent different approaches for gene 
ranking and selection. Dudoit et al. proposed the BW sum of 
squares across all paired classes for multicategory 
classification [11]. S2N is calculated by dividing the 
difference of the means of two groups by the sum of the 
standard deviations of those two groups. 

C. Machine learning 
We used three multicategory support vector machines 

(MC-SVMs) based on the binary SVM method: SVM 
one-versus-one (SVM-OVO), SVM one-versus-rest 
(SVM-OVR), and directed acyclic graph SVM (DAGSVM). 
Binary SVMs are learning and pattern recognition algorithms 
developed with the goal of separating classes by a function 
that is computed from available examples. The goal is to find a 
hyper plane that maximizes the separation or margin between 
two classes. To solve multicategory problems using machine 
learning, classification methods use combinations of binary 
classifiers.  

The SVM-OVO method involves construction of binary 
SVM classifiers for all class pairs. In other words, for every 
class pair, a binary SVM problem is solved, and then the 

decision function assigns an instance to a class that has the 
largest number of votes (the so-called Max Wins strategy). 
The SVM-OVR method constructs k binary SVM classifiers, 
where k is the number of classes. The combined OVR decision 
function chooses the class of a sample that corresponds to the 
maximum value of k binary decision functions specified by 
the furthest hyper plane. In DAGSVM, the training phase of 
the algorithm is similar to that in the OVO approach using 
multiple binary SVM classifiers. However, the testing phase 
of DAGSVM requires construction of a rooted binary 
decision-directed acyclic graph using classifiers [10]. 

D.  Model selection and validation 
After determining the order of the variables using the 

feature selection methods, we identified the optimal variables 
with which to construct classification models by increasing 
the number of variables in the order of their importance using 
sequential forward selection (SFS) as the wrapper method 
[12]. 

A grid search, in which a range of parameter values were 
tested using the 5-fold cross validation strategy, was applied 
(Fig. 1). For use with the MC-SVM method, we chose a radial 
basis function among the available kernel functions according 
to the recommendation of a practical guide [13]. The 
parameter values included a penalty parameter (C) and scaling 
factor (σ) for MC-SVMs. The best classification model was 
chosen and employed for prediction. 

The diagnostic ability of the model based on accuracy, 
relative classifier information (RCI), and the kappa index for 
the testing set was determined. RCI, a parameter of an 
entropy-based measure of classifier performance, can be 
measured by the difference in the prior and posterior 
uncertainties. The kappa index is a statistical measure of 
inter-rater agreement or inter-annotator agreement for 
categorical items. We used MATLAB 2012a (Mathworks Inc. 
Natick, MA) to analyze machine learning and SPSS 20.0 
(SPSS Inc., Chicago, IL) for statistical analysis. 

 

Figure 1.  Flow diagram for serous ovarian tumor classification 

  

TABLE I      NUMBER OF DATASETS IN THE NORMAL, SBOT, AND SOC 
GROUPS 

Reference Normal SBOTs SOCs 
Elgaaen BV et al [6]  4 4 4 
King ER et al [7]  6 8 35 
Bowen NJ et al [8]  12 - 12 
Wu Y et al [9]  - - 28 
Total 22 12 79 
Normal = normal ovarian surface epithelial cells, SBOTs = serous borderline ovarian 
tumors,   SOCs = serous ovarian carcinomas. 
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III. RESULT 

Table II shows the top five ranked genes for each feature 
selection method as applied to the training set. Among the 
ranked genes, sentan, cilia apical structure protein (SNTN) 
and aldehyde oxidase 1 (AOX1) were included in the five 
genes used by the best performing SVM model, SVM-OVO. 
Moreover, these two genes were simultaneously selected by at 
least two different feature selection methods among the top 
five ranked genes. 

Table III summarizes the overall classification 
performance of the three MC-SVM models when each of the 
three feature selection methods was applied to the testing set. 
SVM-OVR with S2N-OVO as the feature selection method 
gave the best accuracy of 97.3%, an RCI of 0.916, and a kappa 
index of 0.941, using only five features. One, two, and three 
misclassifications out of 37 testing data sets gave accuracies 
of 97.3%, 94.6%, and 91.9%, respectively. The S2N-OVO 
model also required the fewest number of features (5) for the 
best performance; the BW and S2N-OVR used 10 and 14–20 
features, respectively.  

The optimal model of SVM-OVR using the S2N-OVO 
feature method were found using a radial basis function with a 
penalty parameter (C) of 1 and scaling factor (σ) of 0.01. 
Additionally, although there were not shown in table III, for 
the training set, the accuracy of the cross-validation when 
using the optimal parameters and features with the S2N-OVO 
method were 96.1%, 98.7%,and 97.3% for SVM-OVO, 
SVM-OVR, and DAGSVM, respectively; suggesting that the 
constructed models were not over-fitted.  

Fig. 2 shows the gene expression rates of SNTN and 
AOX1 between the three data groups. The mean (standard 
deviation) SNTN expression rates were 4.2 (1.7), 8.2 (0.6), 
and 3.2 (1.4), in the normal, SBOT, and SOC groups, 
respectively. The mean AOX1 expression rates were 7.8 (1.2), 
5.4 (0.8), and 5.0 (1.3), respectively. Intergroup differences 
were determined using repeated measures analysis of variance 
with the Bonferroni correction. The normal group showed 
high-level expression of AOX1, whereas SBOTs and SOCs 
showed low-level expression. AOX1 expression could be 
used to differentiate the normal group from the cancerous 
groups (p < 0.001), but could not be used to distinguish 
SBOTs from SOCs (p = 0.783). In contrast, SNTN was highly 
expressed in SBOTs whereas normal and SOCs groups 
showed low-level gene expression. In addition, SNTN 
expression was significantly different between all groups (p < 
0.01), especially the SBOT and SOC groups (p = 1.66 × 
10-19). Therefore, we hypothesized that combinatorial 

assessment of the expression of both genes in a sample would 
accurately differentiate between normal cells and early and 
advanced subtypes. 

 

 

IV. DISCUSSION AND CONCLUSION 

Using three machine learning algorithms for multicategory 
classification of DNA microarray data, we determined an 
optimal approach to support a clinical diagnosis of ovarian 
tumor subclasses. This is the first study to construct a 
multicategory classification diagnosis model for ovarian 
cancer, which is particularly useful for detecting 
asymptomatic early-stage ovarian cancer and determining the 
prognosis of patients at risk of developing advanced stage 
ovarian cancer. The best accuracy of our model for subclass 
diagnosis was 97.3%, with a good discriminative ability. This 
model would be helpful in screening patients with the risk of 
developing advanced-stage ovarian cancer.  

The current diagnostic tools for ovarian cancer are 
generally limited to biochemical tests, which require human 
and material resources and carry the risk of an inaccurate 
diagnosis. With the current model, ovarian tumors could be 
quickly classified into subclasses with a single biopsy using 
computation analysis of gene expression, providing a time and 

 
Figure 2.  Box plots of the two gene expression levels for the normal (n=22), 
SBOTs (n=12), and SOCs (n=79) (a) SNTN and (b) AOX1 with a log2 scale. 

TABLE II      THE TOP FIVE RANKED GENES FOR EACH FEATURE SELECTION 
METHOD USED IN THE TRAINING SET (N = 76)  

Gene symbol 
BW S2N-OVO S2N-OVR 

ITLN1 SNTN PGR 
LHX9 LOC100506777 ABCA8 
MUC1 AOX1 FLRT2 
SNTN CAPS AOX1 
AOX1 TPPP3 ITLN1 

BW = ratio of genes between-categories to within-category sums of squares, S2N = 
signal-to-noise scores, OVO = one-versus-one, OVR = one-versus-rest. 

 

TABLE III       PERFORMANCE OF EACH MACHINE LEARNING METHOD WITH EACH FEATURE SELECTION METHOD WHEN APPLIED TO THE TESTING SET 

Algorithm 

Feature selection methods  (n = 37) 

BW S2N-OVO S2N-OVR 
Acc 
(%) RCI Kappa No. of 

features    
Acc 
(%) RCI Kappa No. of 

features    
Acc 
(%) RCI Kappa No. of 

features    

MC- 
SVM 

OVO 91.9 0.611 0.804 10 94.6 0.711 0.874 5 94.6 0.781 0.879 14 

OVR 94.6 0.781 0.879 10 97.3 0.916 0.941 5 97.3 0.916 0.941 20 

DAGSVM 91.9 0.611 0.804 10 94.6 0.711 0.874 5 94.6 0.781 0.879 14 
BW = ratio of genes between-categories to within-category sums of squares, S2N = signal-to-noise scores, OVO = one-versus-one, OVR = one-versus-rest, ACC = accuracy, RCI 
= relative classifier information, Kappa = kappa index, MC-SVM = multicategory support vector machine, DAGSVM = directed acyclic graph SVM. 
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cost-effective accurate diagnosis.  

The SVM-OVR classification model, when used with 
S2N-OVO, yielded the highest accuracy in discriminating 
ovarian tumor subclasses using only five features. The fewer 
the features needed for selection, the more efficient is the 
model. The use of fewer features reflect a reduction in the 
high-dimensional microarray data, minimizing the need for 
high-throughput arrays and the synthesis of a large number of 
polymerase chain reaction primer sets that would drastically 
increase screening costs. 

The high performance of SVM models is attributable to 
their efficiency in finding a unique optimal solution, their 
flexibility in incorporating multiple data types, and their 
ability to model nonlinear patterns. Moreover, SVMs perform 
well in various areas of biological analysis, and are well suited 
to high-dimensional data such as microarray data. MC-SVMs 
based on binary SVMs can also accurately classify a gene 
expression data set. In MC-SVMs, however, when the number 
of classes increases, the complexity of the overall classifier 
also increases. 

Although further studies are necessary for validation of the 
SNTN and AOX1 genes identified as ovarian cancer 
biomarkers, the preliminary results show great promise, as has 
been seen with the oncotype molecular test for breast cancer, 
which uses a 21-gene molecular signature to diagnose breast 
cancer types [14]. SNTN and AOX1 were included in the five 
genes used by the best performing SVM model and 
simultaneously selected by at least two different feature 
selection methods. Changes in SNTN expression have been 
associated with pathological and cancerous phenotypes. King 
et al. [7] demonstrated differential gene expression in 
high-grade SOCs compared with low-grade SOCs and SBOTs. 
They found that 122 genes were upregulated in the SBOTs 
and low-grade SOCs compared with high-grade SOCs, and 
that SNTN was one of the 20 most commonly upregulated 
genes [7]. SNTN encodes sentan, an apical structure protein 
found in the cilia lining the female reproductive tract [15]. 
This could explain why SNTN was identified as a biomarker 
for early ovarian cancer in the current study. The AOX1 gene 
has not been much investigated and it should be further study. 

Clinicians can use this machine learning model to 
objectively differentiate ovarian tumor subclasses with high 
accuracy. This accurate diagnostic support tool can reduce not 
only the cost and time for diagnosis, but also the risk of 
progression to more advanced stages. Moreover, if used, it 
would minimize the application of excessive treatment that 
may not be appropriate for SBOTs, such as radical 
ovariectomy and chemotherapy. Early identification of 
ovarian cancers will allow monitoring of disease progression 
to an advanced stage and will provide further information on 
the carcinomatous changes and underlying molecular events 
that occur. Improved insight into the molecular characteristics 
of the subclasses of ovarian tumors would eventually lead to 
more individualized and effective treatments [9]. 

One of the limitations to this study was the small sample 
size, because the prevalence of ovarian borderline tumors is 
very low. Future studies will be directed towards determining 
the DNA methylation status of these biomarker genes in 

ovarian cancer subtypes, and further experimental verification 
of SNTN and AOX1 as clinically useful biomarker genes. 

In conclusion, using multicategory machine learning 
algorithms for DNA microarray data, we identified two 
biomarker genes SNTN and AOX1 that are likely involved in 
the pathogenesis and progression of ovarian tumors. Using 
this information, we generated a cost-effect, accurate 
diagnostic method that can be applied in the clinic to 
determine ovarian cancer subtypes, permitting patient-tailored 
therapy to improve the prognosis of at risk patients. 
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