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Abstract— Ventricular tachycardia (V-tach) is a very serious
condition that occurs when the ventricles are driven at high
rates. The abnormal excitation pathways make ventricular
contraction less synchronous resulting in less effective filling
and emptying of the left ventricles. However, almost half of the
V-tach alarms declared through processing of patterns observed
in electrocardiography are not clinically actionable. The focus
of this study is to provide guidance on determining whether
a technically-correct V-tach alarm is clinically-actionable by
determining its “hemodynamic impact”. A supervisory learning
approach based on conditional inference trees to determine the
hemodynamic impact of a V-tach alarm based on extracted
features is described. According to preliminary results on a
subset of Multiparameter intelligent monitoring in intensive
care II (MIMIC-II) database,true positive rate of more than
90% can be achieved.

I. INTRODUCTION

Ventricular tachycardia (V-tach) are among the most fre-
quent critical arrhythmias. In fact, in a recent intensive care
unit study [1], 35% of all critical ECG arrhythmia alarms
were V-tach alarms. V-tach is a very serious condition that
occurs when the ventricles prematurely contract at high rates.
The abnormal excitation pathways make ventricular contrac-
tion less synchronous with artrial contraction and can lead to
ineffectual filling and emptying of the left ventricles [2, 3]. V-
tach can be a precursor to ventricular fibrillation which may
be fatal unless quickly corrected by cardiac conversion [4].

Despite being categorized as critical, not all V-tach alarms
are actionable. In fact, in a recent large study of inten-
sive care alarms only 15% of the total number of alarms
(885 out of 5934) were deemed to be clinically-relevant
or actionable [5]. Non-actionable alarms can be divided
into two groups: 1) technically-false and 2) clinically non-
actionable. Technically-false alarms typically occur when
there is noise (e.g., interference from other devices) or
artifacts (e.g., motion) present in the signal. Clinically non-
actionable alarms occur when the alarm is correctly detected
and isolated by the monitoring device, but the alarm does not
necessiate clinicial intervention (e.g., does not necessiate the
administration of medication).

Previous efforts to reduce technically-false alarms have
focused on improving signal acquisition to reduce noise,
incorporating accelerometers to reduce motion artifacts, and
calculating signal quality to quantify confidence in the
alarm [1]. Previous efforts to reduce clinically non-actionable
alarms have employed adaptive thresholding and emphasized
multi-parameter analysis. The focus of this study is to pro-
vide guidance on whether a technically-correct (true positive)
V-tach alarm is clinically-actionable or not by automatically

rating the alarm in terms of its “hemodynamic impact”. A V-
tach alarm declared by the monitoring device may be correct
based on morphology, but may be clinically non-actionable
because it may not significantly degrade the heart’s ability
to perfuse the body’s organs. For example, an isolated
short-duration V-tach causing a small temporary drop in
systolic blood pressure may only have a minimal hemody-
namic impact. The idea is that the additional hemodynamic
information may help further categorize and prioritize V-
tach alarms thereby improving alarming and aiding hospital
workflow.

Figure 1 shows an example of a high and a low im-
pact event. The top plots are electrocardiographic (ECG)
waveforms. The middle plots show the corresponding arte-
rial blood pressure (ABP) waveforms along with summary
numerics (systolic, diastolic, and mean pressures). Note that
for the event on the left the arrhythmia not only causes a
sharp drop in pressure but causes the ABP waveform to
completely lose its pulsatile nature during a portion of the
event. This behavior signifies a high hemodynamic impact
and is in contrast to the event on the right hand side where
the pulsatile nature of the ABP waveform is maintained. The
V-tach on the right still effects the systolic, diastolic, and
mean pressures but to a lesser extent than the event on the
left. Comparatively then the event on the right has a low
hemodynamic impact.

The paper is organized as follows. First, we describe our
technical approach. Then, we provide preliminary results
on a subset of records from the Multi-Parameter Intelligent
Monitoring for Intensive Care II (MIMIC-II) database [6].
Finally, we provide future research directions.

II. TECHNICAL APPROACH

The flow diagram of our technical approach is shown in
Figure 2. First, we extact features from segments of ECG
and ABP waveforms that were recorded during true positive
V-tach events. Then, using these features, we apply a super-
vised learning approach to train a classifier that categorizes
the events’ hemodynamic impact. The approach yields a
transparent classification scheme that labels (true positive)
V-tach events as having low, medium, or high hemodynamic
impact. The approach also includes a mechanism to weigh
the features individually so that the classifier’s performance
can be further optimized.

In particular, we propose an adaptive classification ap-
proach based on conditional inference (CI) trees. A CI
tree [7] is a relatively new machine learning method that
produces classifiers structured as binary trees. The approach,
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Fig. 1. Examples of V-tach events having high (left) and low (right) hemodynamic impact.

Fig. 2. The overview of training the conditional inference tree.

like most tree based methods, recursively partitions the
feature space to make each partition as pure (single class) as
possible. Moreover, CI trees are easy to interpret because one
can transverse the tree and see all the decisions that lead to
a particular classification–a quality that is particularly useful
in the context of patient monitoring.

CI trees hold two major advantages over the other tree
based methods:

• Pruning is not necessary. Other tree based methods
first grow a tree to unlimited depth to fit the training
data as well as possible, and then prune the tree in a

post-hoc manner in order to reduce (ideally eliminate)
the overfitting. The CI tree method on the other hand
leverages an early-stopping criteria for growing the tree
that is based on non-parametric permutation tests.

• The conditional inference framework allows selection
of categorical features for making a split in unbiased
and statistically principled way. Most other tree based
methods have a bias towards selecting the continuous
features (or features with many possible values) for
making the split. This artificial bias compromises the
classification accuracy on unseen data.

While the CI tree approach has advantages, its standard
application to the present problem often results in imbalanced
performance for the three impact classes, that is, there may
be large, unwanted variations in the sensitivity and specificity
among the low, medium, and high classes. We address this
issue by making the CI approach adaptive in the sense that
we tune the class weights to influence performance.

The CI tree approach has an optional weight vector that
can be used in the fitting process. Only nonnegative integer
valued weights are allowed. The default class weight is one.
Each node of the CI tree is represented by a vector of case
weights having nonzero elements when the corresponding
observations are elements of the node and are zero otherwise.
The splitting of a node is based on the sum of these weights.
Thus, by changing these class weights, the splitting can be
manipulated to improve the sensitivity and specificity of a
specific class of hemodynamic impact.

For implementation of the CI tree approach, we use the
ctree module in the R package party [8]. A CI tree offers
several hyperparameters that can be tuned. We used 10-
fold cross-training. In our preliminary experiments, we set
the maximum p-value for the split to 0.01, and set the
maximum depth along any branch to 5. In the future, we
plan to optimize the values to improve the specificity. Let
W0, W1 and W2 be the weights of the low-impact class,
medium-impact class and high-impact class respectively. In
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the training phase, we take the previously determined values
of the hyperparameters (e.g. relative class weights), and run
the training algorithm as outlined in Algorithm 1. Given the
inputs and the constraints, the core algorithm also describes
the process used for the training step of cross-validation,
that we use for tuning weights as well as for evaluating the
algorithm performance (next section).

Algorithm 1 Training a Conditional Inference Tree
1: Input Relative Class Weights: W0 = 1;W1 =

W1∗;W2 = W2∗

2: Input Dataset: Dtrain : (Xi, yi) for i = 1, .., Ntrain ;
yi ∈ low,med, high

3: Input Split Decision Constraints: p-value ≤ 0.01, Depth
≤ 5, SumParentWeights≥ 20, SumChildWeights≥ 7

4: repeat
5: STEP 1: Compute association of features with the

response
6: for all j ∈ (1, 2, ...,m) do
7: Test the null hypothesis H0 of independence be-

tween Y and Xj

8: Using non-parametric permultation tests, obtain p-
value for H0 for Xj , i.e. Pj

9: end for
10: STEP 2a. If H0 cannot be rejected with the statistical

significance level specified by p-value, STOP
11: STEP 2b. Determine the feature Xj∗ with strongest

association to y. Xj∗ = argminj Pj .
12: STEP 3. Search for the value of Xj∗ that provides

best binary split of the data at the current node.
13: STEP 4. Recursively repeat the above steps for both

child nodes.
14: until H0 cannot be rejected for any feature.

III. PRELIMINARY RESULTS

The data set used in the current study is a subset of
the data set described in [1] where a collection of 447
waveform records were isolated from the MIMIC II Wave-
form Database (version 2). Each record within this super
set contains ECG and ABP waveform recordings during the
time at which critical ECG arrhythmia alarms were issued.
Among the total of 5386 alarms, 1015 were identified by
a team of experts as being true positive (TP) V-tach events
(see [1] for details about how these annotations were per-
formed). V-tach and extreme tachycardia were, respectively,
the first (35.3%) and second (34.8%) most common critical
arrhythmias within this data set.

Out of the 1015 TP V-tach events, we isolated 430
events from 69 waveform records. We subsequently had two
engineers in our group, one with clinical training, annotate
each event as having a high, medium, or low hemodynamic
impact. We refer to these two sets of annotations as “Version
1” and “Version 2” where the former is biased towards a large
number of low impact alarms and the later biased towards
high impact alarms. Here the word bias refers to human bias,
i.e., one of the annotators labeled a greater number of events

as low impact compared to the other annotator who labeled
a greater number as high impact events.

The features used by the classifier are
• Median of the pulse rate from ECG during the alarm,

i.e., electrical heart rate rate.
• Median of the pulse rate from ABP during the alarm,

i.e., mechanical heart rate.
• Median of the difference between pulse rates from ECG

and ABP.
• Minimum value of the systolic blood pressure during

the alarm.
• Ratio of the minimum value of the systolic blood

pressure to the median of the systolic blood pressure.
• Duration of the alarm.
• Standard deviation of the pulse rate from the ECG.
• Standard deviation of the pulse rate from the ABP.
• Standard deviation of the difference between pulse rates

from ECG and ABP.
Note that while these features fundamentally derive from
the ECG and ABP waveforms, most are taken from 1
Hz summary numerics derived from the waveforms. For
example, to compute the median of the ECG pulse rate (first
feature), a 1 Hz pulse rate time series would be derived from
the ECG waveform and the median of that time series during
the V-tach event would become the feature of interest.

To understand why many of the features concern the ECG-
and ABP-derived pulse rates, we refer back to Fig. 1. In
the figure, the bottom plots show the pulse rates (heart rate)
for each event as a function of time. Note that for the high
impact event on the left the ECG- and ABP-derived pulse
rate diverge. This separation is a consequence of the fact
that the pulsitile nature of the ABP waveform is lost during
the event (beats are missed in the ABP waveform and the
interval between detected beats lengthens causing the rate to
decrease). The separation is therefore a feature marking a
possibly high impact event. In contrast, the absence of rate
diverge is a feature of a lower impact event.

The features that are functions of the pressure numerics
are meant to track the relative changes in arterial pressure
and naturally provide information about the hemodynamic
effects of a V-tach.

The results of our algorithm are shown in Figure 3 for the
Version 1 and Version 2 annotations. The classifier achieved
a true positive rate of 91% at a false positive rate of 31%
for the Version 1 annotations. Here, a true positive event
is defined as one where the classifier classifies a V-tach as
having a high hemodynamic impact when indeed it is a high
impact event. Likewise, a false positive event is defined as
one where the classifier classifies a V-tach as having a high
impact when in fact it is low impact event. For the Version
2 annotations the classifier is able to achieve a higher true
positive rate of 97% but at the cost of a higher false positive
rate (45%).

A portion of the CI tree for Version 1 is shown in Fig. 3.
The rule that describes the branch leading to the classification
than contains most of the “low” hemodynamic impact alarms
is highlighted in bold red lines. The interpretation is that the

3458



Annotation Type Low(Perfusing)
High(Non-
perfusing)

TPR and FPR - 10-fold
Cross validation

Relative
Class Weights

Version 1 (large
number of “Low”s) 269 101 91% TPR at 31% FPR 1:20

Version 2 (large
number of “High”s) 31 339 97% TPR at 45% FPR 1:16

Fig. 3. Performance results of the conditional inference tree for the MIMIC-II data (table) and an illustration of one branch of the classifier.

majority of the TP V-tach alarms have “low” impact if the
standard deviation of the systolic pressure is less than or
equal to 9.87 AND the standard deviation of the difference
in pulse rates is less than or equal to 14.48 AND the ratio
of the minimum value of the systolic pressure to the median
of the systolic pressure is greater than 0.79. The FPR is still
relatively high. In the future, we plan to expand the feature
set and also include features from plethysmograph waveform
to improve the FPR without compromising from the TPR.
We compared the results of the CI tree (not optimized for
p-value and depth) to a random forest approach using the
Version 1 (large number of “Low”s) annotations. The TPR
and FPR for both approaches are shown in Table I. The TPRs
are similar but the FPR from the random forest algorithm is
twice the FPR of the CI tree approach.

TABLE I
THE COMPARISON OF THE CI TREE AND RANDOM FOREST RESULTS.

Algorithm Type TPR and FPR - 10-fold
Cross validation

CI tree 91% TPR at 31% FPR
Random forest (1000 trees) 93% TPR at 59% FPR

IV. CONCLUSIONS

In this paper, we tailored the conditional inference tree
learning method to classify the degree of hemodynamic
impact of technically-correct V-tach events. It is hoped that
this additional information can help differentiate clinically-
actionable, i.e., high impact, T-tach alarms from less critical,
non-actionable alarms. According to preliminary results on
a subset of the Multiparameter Intelligent Monitoring in

Intensive Care II (MIMIC-II) database, a true positive rate of
more than 95% can be achieved at the cost of false positive
rate of less than 30%. The false positive rate is relatively
high. We suspect that this is due to additional features from
ECG and ABP waveforms that may be needed to provide
differentiation or due to small number of components in the
corresponding classes of annotations. In the future, we also
plan to include features from the concurrent plethysmograph
waveform recordings. We are also in the process of obtaining
consensus annotations from clinicians for additional testing
of the performance of the algorithm.
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