
  

 

Abstract— Powered prostheses have the potential to restore 

abilities lost to amputation; however, many users report 

dissatisfaction with the control of their devices. The high 

variability of the EMG signals used to control powered devices 

likely burdens amputees with high movement uncertainty. In 

able-bodied subjects uncertainty affects adaptation, control, 

and feedback processing, which are often modeled using 

Bayesian statistics. Understanding the role of uncertainty for 

amputees might thus be important for the design and control of 

prosthetic devices. Here we quantified the role of uncertainty 

using a visual trial-by-trial adaptation approach. We compared 

adaptation behavior with two control interfaces meant to mimic 

able-bodied and prosthesis control: torque control and EMG 

control. In both control interfaces, adaptation rate decreased 

with high feedback uncertainty and increased with high mean 

error. However, we did observe different patterns of learning as 

the experiment progressed. For torque control, subjects 

improved and consequently adapted slower as the experiment 

progressed, while no such improvements were made for EMG 

control. Thus, EMG control resulted in overall adaptation 

behavior that supports Bayesian models, but with altered 

learning patterns and higher errors.  These findings encourage 

further studies of adaptation with powered prostheses. A better 

understanding of the factors that alter learning patterns and 

errors will help design prosthesis control systems that optimize 

learning and performance for the prosthesis user. 

I. INTRODUCTION 

Powered upper limb prostheses have a high rate of 
abandonment, and many amputees rely instead on body-
powered prostheses, or no prosthesis at all [1]. Users report 
that powered prostheses lack dexterity and that coordinated 
movements are difficult or impossible [2]. One source of 
difficulty may be the highly variable nature of the 
electromyographic (EMG) signals [3], which can make users 
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uncertain of how the arm will respond. To guide 
improvements to prosthesis control and feedback, we need to 
understand how EMG control and uncertainty affects 
movements with prostheses. 

In able-bodied subjects, uncertainty affects adaptation 
[4], control [5], and feedback processing [6]. Bayesian 
models typically formalize adaptation as a problem of 
estimating the relevant dynamics [7]. These models make 
concrete predictions of the factors that influence adaptation. 
Adaptation should be fast when sensory information is 
precise and the subject is uncertain of movement outcomes. 
Conversely, adaptation should be slow when sensory 
information is uncertain and the subject is confident in 
movement outcomes. The important point about this line of 
research is that it allows us to use adaptation studies to 
implicitly measure uncertainty, which is crucial for control, 
learning and coordination. 

Prosthesis control likely introduces higher uncertainty, 
due in part to the high variability of EMG signals and the 
lack of kinesthetic feedback [8]. These conditions may 
hinder the prosthesis user’s ability to adapt in response to 
errors. To improve the interaction between the person and 
the prosthesis, we want to understand how uncertainty affects 
prosthesis control. Uncertainty and its role in adaptation 
influences the type of control systems that will most 
effectively improve performance. 

To begin characterizing adaptation with powered 
prostheses, we used an established experimental paradigm 
[4], [9], [10] in which perturbations test the user’s reliance 
on feedforward and feedback information. We studied trial-
by-trial adaptation to visual perturbations with two levels of 
feedback uncertainty. We compared adaptation rates and 
mean errors with two control interfaces: torque and EMG, 
which serves as a simplified comparison between able-
bodied and prosthesis control signals. Subjects used the same 
isometric setup for both interfaces, allowing for a meaningful 
comparison of adaptation.   

II. METHODS 

A. Subjects 

Eight able-bodied subjects participated in this study. 
Three subjects were female, five were male, and all were 
between 23 and 32 years old. The experiment was approved 
by the Northwestern University Institutional Review Board.   
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B. Experimental Protocol 

The experiment was designed to assess the balance 
between relying on feedforward state predictions and relying 
on feedback information. The subject moved a cursor in the 
absence of feedback, and presumably had some prediction of 
the movement endpoint. We then show perturbed visual 
feedback of the endpoint. The subject’s corrective action on 
the following trial indicates some adaptation to the perceived 
error. The average portion of the error that is corrected is 
referred to as the adaptation rate. 

Subjects used elbow extension to move a cursor towards 
a target along a single degree-of-freedom (DOF) circular 
track (Fig. 1). Movement time was limited to 3 seconds, 
after which the cursor returned to the starting position. 
Subjects were given 10 practice trials, in which they had 
visual feedback of the cursor throughout the movement. In a 
second round of 15-20 practice trials, visual feedback was 
removed 0.5 seconds into the movement time and reappeared 
after the movement for 100 ms to show the subject the cursor 
endpoint [4], [11]. This terminal visual feedback allowed the 
subjects to see their error at the end of the trial, but 
minimized any corrective movements during the trial.  The 
testing phase of the experiment consisted of 4 blocks of 75 
trials each, with approximately 2 minutes of resting between 
blocks. In this phase, the cursor endpoint was perturbed 
visually by either -40, 0, and 40 degrees. Subjects were not 
informed of the perturbations and were instructed to hit the 
target as accurately as possible.  

To manipulate feedback uncertainty, the cursor endpoint 
was randomly displayed as either one dot or five dots [4], 
[12]. Feedback uncertainty was low when subjects saw the 
cursor as one dot, whereas feedback uncertainty was high 
when subjects saw the cursor as five dots. The spread of the 
five dots was a Gaussian distribution with the true cursor 
position as the mean and a standard deviation of 40 degrees.  

C. Control Interfaces 

Subjects completed the experimental protocol once with 
torque and once with EMG, with each protocol on separate 
days in a randomized order.  

For both the torque and EMG control interfaces, subjects 
placed their right arm in a modified elbow brace that 
minimized movement (ProCare Elbow RANGER Motion 
Control). A reaction torque sensor measured elbow 
extension torque (Futek TFF40). A self-adhesive bipolar 
electrode measured the EMG of elbow extension (Delsys 
Bagnoli). 

The effort level required to control the cursor was 
equalized as closely as possible across torque and EMG 
control. Subjects exerted approximately 4 N-m of extension 
torque for 10 seconds using visual feedback as guidance. 
The mean absolute value of torque and EMG activity were 
recorded and used to normalize torque and EMG control 
signals to the same contraction strength. The control signals 
were high-pass filtered at 0.1 Hz, rectified, low-pass filtered 
at 5 Hz, normalized, and mapped to cursor velocity [13]. 

Dynamics were chosen to match those of a typical prosthetic 
arm [14]. 

III. RESULTS 

We compared trial-by-trial adaption to visual 
perturbations across two control interfaces—torque and 
EMG—with two levels of feedback uncertainty each. 
Feedback uncertainty was manipulated by displaying cursor 
feedback as one dot (low uncertainty) or as five dots (high 
uncertainty). Overall adaptation rate was evaluated as a 
function of control interface, feedback uncertainty, and mean 
absolute endpoint error. Adaptation rate and mean error were 
also calculated over each block to assess changes over the 
course of the experiment. 

Each subject displayed trial-by-trial adaptation during 
both torque control and EMG control (Fig. 2).  A visual 
perturbation in one direction typically elicited a correction in 
the opposite direction on the following trial. The average 

 

Figure 1. Illustration of experimental setup. The cursor started at the left 
side of the circle (grey dot). Subjects used either elbow extension torque or 
elbow extension EMG activity to move the cursor clockwise towards the 
target (green square). The cursor endpoint was shown as either one dot or 
five dots (shown above) to manipulate feedback uncertainty. 
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Figure 2. Data from representative subject using EMG control. Each circle 
represents an individual trial. Adaptation rate is calculated as the slope of 
the regression line (bold solid line) between the endpoint error of trial N 
and the perturbation on trial N-1. Trials following one-dot terminal 
feedback were separated from those following five-dot terminal feedback 
and adaptation rate was calculated separately for each feedback condition 
(one-dot condition shown). Note: the slope of each regression is negative; 
however, adaptation rates are reported as positive numbers. 
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amplitude of the correction response, or the slope of the 
regression between error(n) and perturbation(n-1), is a 
measure of adaptation rate. The slope of each regression was 
negative, indicating positive adaptation rate. 

Overall adaptation rate increased as mean error 
increased, but was not significantly affected by control 
interface (Fig. 3). The slope of the relationship between 
adaptation rate and mean absolute endpoint error was 
statistically significant (p<0.02, Table 1). Higher feedback 
uncertainty significantly decreased the intercept of this 
relationship (p<0.01, Table 1). Control interface did not 
have a statistically significant effect on either the intercept 
(p=0.66, Table 1) or the slope (p=0.53, Table 1) of the 
relationship between adaptation rate and mean error.  

In the first block of trials, the mean error of EMG control 
was not significantly different that of torque control; 
however, in blocks two through four, the mean error of EMG 
was significantly higher (Figure 4). The mean error of torque 
decreased as the experiment progressed (from block two to 
three), whereas the mean error of EMG control did not 
significantly change across all four blocks.  

In the one-dot feedback condition, adaptation rate 
decreased as the experiment progressed for torque control, 
but did not change significantly for EMG control (Fig. 5, 
top). In the five-dots feedback condition, there were no 
statistically significant changes in adaptation rate for EMG 
or torque control (Fig. 5, bottom).  

IV. DISCUSSION 

In this work we compared trial-by-trial adaptation with 

torque and EMG control interfaces. We found that the 

control interface did not significantly affect overall 

adaptation rate, and instead that adaptation rates depended 

primarily on mean error and on feedback uncertainty. Only 

for the torque condition did we see a decrease in error over 

time and a concomitant decrease in adaptation rate.  

Subjects displayed clear adaptation using EMG 

control (Fig 4), which encourages further characterization of 

adaptation during prosthesis control. Previous studies have 

suggested that prosthesis users are capable of adaptation, but 

very few have explicitly investigated sensorimotor 

adaptation. Amputees have intact central nervous system 

capabilities and those that use myoelectric prostheses 

experience only minimal cortical reorganization after 

amputation [15]. Goal-directed reaching capabilities for 

amputees using body-powered prostheses are not 

significantly different from able-bodied subjects [16]. Able-

bodied subjects using EMG control are able to adapt to 

unintuitive control schemes with only visual feedback [17]. 

These studies all imply that prosthesis users maintain 

adaptation capabilities, and our results confirm this theory. 

However, this study is only a small first step 

towards understanding the sensorimotor adaptation of 

amputees. Here we studied able-bodied subjects using EMG 

control in a single-DOF task. Multi-DOF tasks and multi-site 

control schemes present more complex challenges. Amputees 

using physical prostheses also face more complex 

challenges, and it’s unclear how the dynamics of the 

prosthesis and the control scheme will affect adaptation. 

The overall adaptation rates were not significantly 

different between torque and EMG control (Fig. 3, Table 1); 

however, we observed different error patterns (Fig. 4) and 

learning patterns (Fig. 5) across individual blocks of the 

experiment. The mean error of EMG was higher and stayed 

fairly constant, whereas the mean error of torque decreased 

over time. The error is a function of both random variability 
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Figure 3. Adaptation rate as a function of mean absolute endpoint error. 
Solid lines indicate low feedback uncertainty (one dot) and dashed lines 
indicate high feedback uncertainty (five dots). 

TABLE 1. RESULTS OF THREE-WAY ANOVA ON ADAPTATION RATE. 

Factor Type p-value 

Feedback uncertainty Categorical <0.01 

Control signal Categorical 0.66 

Mean error Continuous <0.02 

(Control signal)*(Mean error) Continuous 0.53 

Categorical factors indicate an offset change to adaptation rate. 

Continuous factors indicate a slope change to adaptation rate. 
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Figure 4. Mean absolute endpoint error as experiment progressed. Bars 
indicate standard errors of the mean. One block includes 75 trials. 
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in the signal and of operator error, and the patterns we 

observed may be caused by the higher variability of EMG 

signals. Subjects were able to reduce operator errors and 

improve performance with torque control, but may have been 

limited by the higher variability with EMG.  

Our overall results support Bayesian predictions 

and previous findings [4] with regards to both feedback and 

feedforward uncertainty. As feedback uncertainty increased 

from one dot to five dots, adaptation rates decreased (Fig. 3). 

As mean absolute error increased, adaptation rates increased. 

If we assume that mean absolute error is an indication of 

feedforward uncertainty, this follows the Bayesian prediction 

that feedforward uncertainty speeds up adaptation. Thus we 

suggest that Bayesian models are appropriate for describing 

adaptation during prosthesis control and that future studies 

should explore more complex tasks. 

Our block-by-block analysis showed altered 

learning patterns and higher error rates with EMG control. 

These differences may be caused by the variability of EMG 

control signals, slower learning timescales, suboptimal 

control dynamics, or other factors. We need a closer 

examination of the factors that influence learning patterns 

with EMG control, because altered learning patterns may 

contribute the lack of coordination experienced by amputees 

using powered prostheses.  
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Figure 5. Adaptation rate as experiment progressed. The top plot shows 
adaptation in the one dot, or low feedback uncertainty condition. The 
bottom plot shows adaptation in the five dots, or high feedback uncertainty 
condition. Bars indicate standard errors of the mean. One block is 75 trials. 
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