
  

 

Abstract— Reinforcement learning (RL) is a form of motor 

learning that robotic therapy devices could potentially 

manipulate to promote neurorehabilitation. We developed a 

system that requires trainees to use RL to learn a predefined 

target movement. The system provides higher rewards for 

movements that are more similar to the target movement. We 

also developed a novel algorithm that rewards trainees of 

different abilities with comparable reward sizes. This algorithm 

measures a trainee’s performance relative to their best 

performance, rather than relative to an absolute target 

performance, to determine reward. We hypothesized this 

algorithm would permit subjects who cannot normally achieve 

high reward levels to do so while still learning. In an 

experiment with 21 unimpaired human subjects, we found that 

all subjects quickly learned to make a first target movement 

with and without the reward equalization. However, artificially 

increasing reward decreased the subjects’ tendency to engage 

in exploration and therefore slowed learning, particularly when 

we changed the target movement. An anti-slacking watchdog 

algorithm further slowed learning. These results suggest that 

robotic algorithms that assist trainees in achieving rewards or 

in preventing slacking might, over time, discourage the 

exploration needed for reinforcement learning. 

I. INTRODUCTION 

Reinforcement learning (RL) likely plays a key role in 
skill acquisition and motor rehabilitation [1, 2]. In this type of 
learning, the motor system uses a reward signal rather than a 
signed error signal. It must therefore explore different 
movements to learn how to maximize reward. A recent motor 
learning study found that initial levels of movement 
variability predict rates of trajectory and force field learning, 
consistent with the idea that the motor system uses 
reinforcement learning for these tasks [3]. Other studies have 
shown that rats cannot learn skilled reaching movements 
when dopaminergic projections to the motor cortex, which 
are a neural reward signal, are disrupted [4]. In a 
rehabilitation context, reinforcement learning models have 
been used to model neural plasticity during stroke 
rehabilitation [5, 6]. These models explain well-known 
features of motor recovery such as residual motor capacity 
[5], shifts of motor activity to secondary motor areas [5, 6], 
and learned non-use [6].  

Despite the probable importance of reinforcement 
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learning for motor learning during rehabilitation, few robotic 
therapy systems have been designed to explicitly manipulate 
reinforcement learning (see however [7]). We developed a 
system to begin studying reinforcement learning in this 
context. This system requires individuals to learn to make a 
predefined target movement using only a scalar reward 
signal, which relates to the similarity of the movement 
attempt to the target movement. We used this system to study 
how manipulating reward affects learning. Our working 
hypothesis was that an appropriately-designed algorithm that 
assisted trainees in achieving rewards would not decrease 
learning rates during reinforcement learning.   

II. METHODS 

A. The RL Trainer 

We tested 21 unimpaired human users who performed a 
task that consisted of moving the handle of a 3D haptic 
device (Falcon; Novint Technologies Inc) from a start 
position to a target location (Fig. 1). A computer screen 
provided visual feedback about their performance, but did not 
show the target. The haptic device has a workspace of about 
10x10x10 cm and it was programmed to behave as a damped 
spring with a rest position at the start target position. All 
participants provided written informed consent. The study 
was approved by the UCI Institutional Review Board. 

The trainees were not instructed about the target 
movement but instead were told to interact with the robot to 
make a balloon grow as quickly as possible (Fig. 1). The 
reward, R, was the speed at which the balloon grew. R varied 
between 0 and 1 proportional to the projection of the current 

hand location ( ̅       ) onto the vector defined from the 

 
Figure 1.  The Reinforcement Learning (RL) Trainer.  Subjects manipulated 
a 3D haptic device (A) to try to make a balloon grow (B) until it popped on 

the screen (C), earning money.  The balloon grew fastest when the subject 

moved the haptic device directly from an initial position to a predefined 
target point, about which the subject was not explicitly instructed. 
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start position to a predefined ‘best point’ ( ̅          ): 

 (              )  
 ̅  ̅

| |̅̅ ̅̅      (1) 

where: 
                          

In this implementation of the RL trainer, the best point was 

defined as the target point. Thus, a movement in the opposite 

direction from the target point was not rewarded (the balloon 

did not grow), while a movement with any component in the 

direction of the target point was rewarded. The optimal 

strategy was then to move the handle directly to the target 

point and wait until the balloon popped. 

B. Equalizing reward through “handicapping” 

Within the RL trainer framework, we designed an 

algorithm that equalizes the reward size for trainees with 

different abilities. This is a key design issue in the context of 

rehabilitation, where it is desirable for a severely impaired 

person to engage in training and not be discouraged by a lack 

of reward. One can draw an analogy with golf handicapping, 

which allows individuals of different skill levels to compete 

against each other. There is also a similarity between reward 

equalization and the mechanical assistance, such as haptic 

guidance, that many current robotic therapy devices use to 

help an impaired person achieve a task.  

The Equalized Reward (ER) algorithm works by 

continuously redefining the best point ( ̅) of Eq. 1 in real-

time based on the movements that the user makes. The 

balloon growth reward is then determined by projecting the 

current hand location onto this dynamic best point. In this 

way, the user receives the same reward for doing their best 

movement as another user who makes the target movement. 

The ER algorithm sets the first best point to be the best 

point of the first movement. It then evaluates all subsequent 

points the user achieves to determine if the current hand 

location is better than the best point.  If it is, the best point is 

set to be the current hand location ( ̅   ̅). This process 

continues until the algorithm converges to the best point 

achievable by the trainee. 

The scoring function we used to evaluate best points was 

inspired by electrical charges. We assigned a negative 

charge at the initial point making the initial point the worst 

point in the workspace, and a positive charge at the target 

point making it the point with the highest possible score 

(Fig. 2).  The equation for this scoring function was: 
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where: 
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This scoring function reinforces any movement away from 

the initial point, as opposed to a scoring function based on 

distance to the target, for example. We desired this property 

to encourage any initial movement, regardless of direction. 

Figure 2 shows sample movements towards and away from 

the target point have a positive reward. A maximum score of 

100 is obtained for movements to the target point. 

 

 
Figure 2. The scoring function. Each colored layer is an iso-surface with the 

same score (blue = negative score, yellow = positive score). This plot also 

shows sample movements and their respective score.  

C. The anti-slacking watchdog 

 The ability of the ER algorithm to converge towards the 

target point relies on the user being able to reach points near 

the best point consistently. However, we know the motor 

system has inherent variability. Since some of this variability 

is in the direction towards the target, the best point will be 

set closer to the target due to this variability. We found 

previously that the motor system contains an automatic 

mechanism that reduces effort when movements are 

successful, called slacking [8]. We predicted that slacking 

would introduce variability into movements that would 

prevent the ER algorithm from converging; we therefore 

designed an anti-slack (AS) watchdog algorithm to prevent 

this from happening. 

We defined slacking as a movement for which the 

maximum reward (i.e. the maximum speed that the balloon 

expanded at in a trial) was less than the maximum reward for 

the previous movement by a threshold amount (we chose 2% 

in this experiment). If slacking was detected in three 

consecutive repetitions, the anti-slack watchdog adjusted a 

correction parameter This parameter led to the same 

movement being rewarded less as defined by the relation: 

  (   )         (3) 

The  algorithm updated the  parameter at the end of every 

trial based on the 2% criterion. The slacking counter was 

reset each time a movement without slacking was executed. 

D. Experimental Protocol 

Each subject performed a set of 4 exercises, each 

consisting of 30 trials. A trial was defined as manipulating 

the handle until the balloon popped.  Exercises 1 and 2 were 

performed on Day 1 and Exercises 3 and 4 on Day 2, 1 day 

later. Subjects were instructed to interact with the haptic 

handle in order to make the virtual balloon grow as fast as 

possible until it “popped”. They were also told that the 

money they would receive for participating in the 

experiment depended on the number of times they popped 

the balloon; thus rapid-as-possible balloon popping was 

important to them.  

On every trial, subjects were given continuous visual 

feedback showing the balloon growing at a speed dependent 

on the position of the haptic handle, as described above. 
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After the balloon popped, the trial was deemed complete and 

the subject was instructed to release the handle. The handle 

then returned to the initial position before the next trial. 

The goal of the experiment was to test how manipulating 

reward with equalized reward (ER) and anti-slacking (AS) 

affected the learning of target movements. Three groups of 7 

subjects each trained using the standard reward (SR group), 

the equalized reward (ER AS-OFF group), or the equalized 

reward with anti-slacking (ER AS-ON).  

For Exercise 1, the target point was located at [40x,0y,0z] 

mm in workspace coordinates. The optimal movement thus 

required a straight pull of the handle towards the user’s 

body. For Exercise 2, we placed the target point outside the 

robot’s workspace at [80,0,0] mm; this simulated a virtual 

injury where the trainee’s range of motion cannot match that 

which is required by the movement. Exercise 2 thus gave us 

information about how the algorithm’s configurations 

affected the performance of users with limited capabilities. 

Exercise 3 was a repeat of Exercise 1, but on a different day, 

to test retention. Exercise 4 tested if the users could learn a 

new movement; thus we changed the target point to be 

located at [0,0,-45] mm, which required a straight downward 

movement of the handle.  

E. Data Analysis 

We measured performance by: the duration of each trial, 

amount of exploration on a trial, the variability between 

trials, and the rate of learning a new movement. The 

duration of the trial, measured from the onset of interaction 

with the handle to when the balloon popped, was inversely 

proportional to the amount of reward that a participant 

received in a given trial (shorter trial duration equaled higher 

reward). We defined the amount of exploration on a trial to 

be the path length of the trial, since trials in which subjects 

explored resulted in increased movement of the robot to 

different locations. To measure between-trial variability, we 

used the Dynamic Time Warping algorithm described in [9] 

to compare the variability between paths in a given set of 

trials. We assessed the learning rate of a new movement by 

defining a convergence index. This index was computed as 

the average of the projection of the end-point location for all 

30 trials in a given exercise to the target point vector. The 

index ranged from 0 to 1 where 1 meant the participant 

converged in the first trial, and 0 meant the participant did 

not converge over the 30 trials.   

III. RESULTS 

A.  How did reward equalization affect learning and 

exploration in Exercise 1? 

Users quickly decreased the trial duration with practice in 

Exercise 1, thus maximizing their reward, regardless of 

which algorithm they used (Fig. 3). Reward equalization 

decreased exploration on the first trial in Exercise 1, 

measured as path length relative to the ER groups (Fig. 4A), 

but the decrease only approached significance (t-test between 

SR group and two groups with ER combined, p = 0.08).   

B. How did the virtual injury affect reward and exploration 

in Exercise 2? 

After the virtual injury (simulated by placing the target 

outside the robot workspace in Exercise 2), all three groups 

again quickly adapted; however, there was a significant 

increase in the average duration of each movement trial for 

the SR group (Fig. 3, Exercise 2, t-test compared to other 

two groups combined, p < 0.001). Thus, as expected, the SR 

group received less reward because they could not move the 

robot to the target point. In contrast, the reward for the ER 

groups did not change after the impairment. 

During the initial trials of Exercise 2, subjects in the SR 

group increased their exploration (Fig. 4 middle and Fig. 5), 

as evidenced by a significant increase in the path length 

from the last trial in Exercise 1 to the first trial in Exercise 2 

(ANOVA, F(2,18) = 4.52, p = 0.02). The ER groups did not 

increase exploration (Fig. 4B). Thus, the amount of 

exploration on the first trial after the virtual injury was 

greater for the SR group (ANOVA, F(2,18) = 4.67, p = 

0.02),  Apparently, following the virtual injury, users in the 

SR group searched for alternative movements to obtain the 

same amount of reward they had during unimpaired training 

in Exercise 1. With further practice, exploration decreased 

(Fig. 4B), suggesting that the group eventually gave up 

exploring. To summarize, the reward equalization algorithm 

increased reward after the virtual injury, but decreased 

exploration relative to the standard reward. 

C. Did the subjects retain what they learned in Exercise 1? 

Participants returned on a second day to perform Exercise 

3, a repeat of Exercise 1. All groups retained at comparable 

levels what they had learned during Exercise 1, on Day 1. 

This was evidenced by a similar average movement time at 

the start of Exercise 3 and at the end of Exercise 1. 

D. How well did subjects learn a new target movement in 

Exercise 4? 

For Exercise 4, on Day 2, we shifted the target movement to 

a point directly below the start position. The SR group  

 
Figure 3. Duration of each trial for Exercises 1 and 2. All groups quickly 
learned to move to the unknown target in Exercise 1. In Exercise 2, when the 

target was moved outside of the workspace to simulate impairment, the EA 

algorithm continued to reward subjects at the same rate as in Exercise 1. 
Subjects without the EA algorithm spent early trials of Exercise 2 exploring 

for solutions to a higher reward, eventually settling at the maximum 
allowable. The dashed line shows the minimum time needed to pop the 

balloon if the subject moved straight to the target location. 
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required significantly fewer trials to learn the new 

movement when compared to both groups that received ER 

(t-test between SR group and other two groups combined, p 

< 0.001, Fig. 6). Thus, once an initial movement had been 

learned, the ER algorithm led to a decreased rate of learning 

for a new movement. Therefore the repeated exposure to ER 

training caused a relative decrease in learning rate for the 

new movement. Compared to SR, ER training also 

significantly decreased exploration on the first trials in 

Exercise 4 (Fig. 4 bottom, ANOVA, F(2,18) = 6.67, p = 

0.007). Thus, the decreased learning rate of a new movement 

by the ER group was likely due to the decreased level of 

exploration.  

 

 
Figure 4. Exploration, measured as path length. A) First and last trials of 
Exercise 1. B) Exercise 2 before, immediately after virtual injury, and on last 

trial. C) Exercise 4 before, immediately after new target, and on last pull.   

Overall, reward equalization decreased path exploration. 

 
Figure 5. Increased exploration only in the Standard Reward group following 

the virtual injury. The top and bottom rows show sample hand paths in 3D 

space for subjects in the Standard Reward and Equalized Reward groups, 

respectively.  Within each row, the plots show 7 trials at the end of Exercise 

1 (“Before”), at the beginning of Exercise 2 (i.e. immediately “After” the 

virtual injury), and at the end of Exercise 2 (“Long Term”).  The darker paths 
in the middle of each plot are the actual 3D hand paths, while the lighter gray 

lines show projection of the hand paths on surfaces of the surrounding cube. 

The anti-slacking watchdog further decreased the learning 

rate (Fig. 6). It also led to a significant decrease in trial-to-

trial path variability between the ER AS-OFF and ER AS-

ON groups at the end of Exercise 3 (t-test, p = 0.01). This 

reduction in variability likely caused the ER AS-ON group 

to converge even more slowly to the target point.  

Figure 7 summarizes the results for Exercise 4 using a 

combination of 3 factors: 1) the path length  of the first trial 

in Exercise 4 – our surrogate for within-trial exploration, 2) 

trial-to-trial path variability of the last 7 trials of Exercise 3, 

our surrogate for between-trial exploration, and 3) the 

convergence index for Exercise 4. The SR group converged 

quickly (convergence index near 1) by exploring broadly on 

the first trial (large circles). In contrast, 6 of the 14 subjects 

in the ER groups never converged or converged slowly to 

find the new target (convergence index below 0.6). 

Finally, the ER AS-ON group (blue circles in Fig. 7) had 

less trial-to-trial path variability than the ER AS-OFF 

subjects (green circles in Fig. 7, t-test, p = 0.03).  Also, 

subjects with higher initial path variability learned the new 

task with significantly fewer trials than users with lower 

initial path variability. 

IV. DISCUSSION 

Based on these results, we suggest several key issues to 
consider in the design of robotic therapies that enhance 
human reinforcement learning during neuromotor 
rehabilitation. First, the initial movement attempts after a 
neurologic injury are critical for the recovery process and it 
seems logical to encourage the patient to use and exercise the 
impaired limb during this time. The ER algorithm, which 
uses the trainee’s best performance instead of a global target 
allowed users with a simulated impairment to learn a motor 
task while receiving high rewards. Algorithms such as this 
might provide a smooth transition as impaired individuals 
relearn how to move an impaired limb while making the 
process motivating. 
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Figure 6. Number of trials needed to converge to a new target movement on 
Day 4 in Exercise 4. We defined convergence as being within a 20% of the 

minimum possible balloon pop time.  

Second, however, we found that once subjects had 
learned a movement, the Equalized Reward algorithm slowed 
down the learning of a new motor task. This was because it 
caused subjects to adopt a strategy with less exploration.  
Subjects in the groups that trained with ER explored less just 
after the virtual injury, as well as when the new target was 
presented. Reduced exploration predicted slower learning. 

Thus, while ER can be used to increase reward, it can also 
cause trainees to adopt a movement training strategy 
characterized by less exploration. This in turn leads to slower 
learning of new movements. Essentially, equalizing reward 
makes similar movements seem almost equally “perfect”, and 
thus the trainee may abandon a more explorative strategy, to 
the detriment of learning new movements. 

Third, addition of the anti-slack watchdog further reduced 
the learning rate of the second movement learned. Thus 
training with this feature also changed the strategies subjects 
used in learning the new task. The anti-slack watchdog 
punished any deviations from the best point during the 
exercises in the direction away from the target, presumably 
further decreasing the tendency of the subjects to explore 
from trial to trial. Slacking is an undesired effect if one 
wishes that the trainee practice with high effort levels, but at 
the same time slacking has the effect of helping the motor 
system explore. Using an anti-slacking controller may reduce 
the variability between movements, increasing reward, but it 
may decrease the ability to learn new movements.  

V. CONCLUSION 

In summary, these results suggest tradeoffs between 
assistance and exploration in machine-assisted motor training 
when the trainee is using reinforcement learning.  Machine 
algorithms that assist trainees in achieving rewards and/or 
prevent slacking might discourage the exploration-based 
strategies needed to learn new movements. This concept is 
related to the exploration versus exploitation tradeoff in 
reinforcement learning theory, in which a system sacrifices 
performance if it explores, and learning if it does not explore.  

Many robot-assisted rehabilitation therapy devices 

currently focus on physically assisting the user, which can 

increase motivation for training. Inasmuch as such devices 

are working with a motor system that is relying on 

reinforcement learning to help it recover, an important 

consideration is that assisting may alter the strategies the  

 
Figure 7. Convergence index, initial path variability, and path length of the 

first trial for Exercise 4.  A convergence index of 1 indicates that subjects 
found the new target on the first movement, while an index of 0 indicates 

that they never found  it.  Path variability was the path-to-path variability 

over the last 7 trials of Exercise 3 (i.e. the variability just before Exercise 4).  
The diameter of the markers is proportional to the path length on the first 

trial of Exercise 4. The SR group, shown on the left, converged quickly by 

exploring more on the first trial (larger circles).  The two groups with ER, 

shown on the right as blue filled circles (ER AS-ON group) and green open 

circles (ER AS-OFF group), did not explore as much as the SR group on the 

first trial of Exercise 4. Several subjects with ER never found the new 
target, or converged very slowly to it (convergence indices < 0.6). 

motor system adopts to learn new movements. It may make 

such strategies less efficient by virtue of discouraging 

exploration. Anti-slacking controllers might have the 

unintended consequence of reducing exploration as well, 

since slacking may serve as an exploration-enhancing 

mechanism. 

Interleaving assistance and challenge trials is one possible 

workaround for maintaining sufficient rewards for motivation 

while also encouraging exploration. For example, one could 

imagine assisting on a relatively high percentage of trials, but 

on the remaining trials, reducing the assistance in order to 

encourage exploration. 
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