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Abstract-- Dystonia is the third most common movement 

disorder worldwide and drastically reduces the quality of life of 

those who are affected. Despite its prevalence, very little is 

known about the underlying pathology of the disorder. Recent 

literature has suggested that abnormal processing in the 

superior colliculus (SC) may play a role in Dystonia.  The SC is 

known to be an important hub in the neural network that is 

used when learning a novel movement and therefore we would 

postulate that a disorder of SC should result in abnormal 

movement learning. Here 9 participants completed learning and 

non-learning movement tasks while behavioural and 

electrophysiological data were acquired. The results of this 

study show that there is a significant relationship between the 

behavioural and electrophysiological data (R2 = 0.19, F(1, 46) 

=10.88, p<0.002) during the learning task but not in the non-

learning task (p>0.05). The developed paradigm is ideally suited 

for probing the underlying pathology of Dystonia via movement 

learning.  

I. INTRODUCTION 

Dystonia is a neurological syndrome manifested clinically by 

focal or generalized sustained muscle contractions, postures 

and/or involuntary movements [1]. Current literature 

suggests that the disorder may be sub-cortical in nature, 

specifically that there is an imbalance in the Superior 

Colliculus (SC) [2]. The SC is associated with visuo-motor 

learning hence we designed a paradigm to monitor the 

process of learning an action [3, 4]. In a recent study 

Bednark and colleagues asked participants to learn the 

location of a hidden target by exploring an on screen space 

using a track ball. Each experimental block consisted of 30 

trails, meaning that the participant was required to learn the 

target location over 30 repetitions. The trials were divided 

into two sets of 15 trials. The authors demonstrated that the 

amplitude of electrophysiological response, known as the P3, 

decreased in the second set of 15 trails when compared to the 

first set, and suggested a link between movement learning 

and P3 amplitude. The subdivision of 30 trials into two 

subsets did not enable the authors to look at the time course 

of the learning process. Here, we extend the previous work 

to show these relationships and hence validate a movement 
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learning paradigm on controls which can then be deployed 

on patients with dystonia. 

II. METHODS 

A. Participants/Ethics 

Nine typically developing adults participated in this study. 

One participant was later excluded from analysis due to poor 

EEG data, leaving a total of 8 participants (1 female; 25 ± .5 

years, mean ± SD). All participants were right-handed as 

revealed by self-report. In accordance with the declaration of 

Helsinki, all participants gave their informed consent to the 

study, which was approved by the Faculty Ethics Committee 

of the Faculty of Health Sciences at Trinity College Dublin. 

B. Experimental Conditions 

Participants were seated in a comfortable chair 70cm from a 

computer monitor in a dark and quiet room and asked to 

complete two separate experimental conditions. Participants 

were instructed to move a computer cursor on a computer 

monitor within a search space (10.8°, visual degrees) using a 

Kensington Orbit Optical Trackball until they located a 

target location (3.2°). When the target location was 

discovered, a green circular stimulus (1.1°) was presented at 

the center of the search space for 500ms. The cursor then 

appeared at a new random starting position inside the search 

space and the participant was instructed to find the target 

location. To complete an experimental block the participant 

was required to find the target location 30 times. At the 

beginning of each block a new target location was selected at 

random. A white cross-hair was presented at the center of the 

search space to give participants a focal point during the 

trials. 

The participants completed two conditions. In the movement 

learning (ML) condition the position of the target location 

was hidden and participants were expected to learn the new 

location over the course of each block. In the continuous cue 

condition (CC) there was no movement learning as the target 

location was highlighted by a grey annulus. Participants 

completed 10 experimental blocks for each condition in 

alternating order, starting with ML, in a single testing session 

(Figure 1). 

C. Data Acquisition 

Continuous EEG data, sampled at 512Hz, was collected from 

64 scalp electrodes and 8 external electrodes using a 

BioSemi high impedance recording system. Stimuli were 

presented using Neurobehavioral Systems’ Presentation 
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software. Movement trajectories were sampled via the 

Presentation software at a rate of 60Hz, allowing for offline 

behavioural analysis. These trajectories were synchronised to 

the EEG data. 

D. Data Analysis 

EEG data were analyzed using custom MATLAB R2013b 

scripts and EEGLAB [5]. EEG data were first de-trended by 

removing the line of best fit from each channel to correct for 

signal drift. The data were then filtered using a 4
th

 order 

band-pass Butterworth filter with a pass band of 0.1 – 30 Hz. 

An external electrode on the supernasion was employed to 

reject trials that contained eye blinks; any channel that 

contained a voltage greater than 80µV was also rejected as 

artefact. Trials that consisted of more than 10% bad channels 

were excluded from further analysis. In trials where the 

number of bad channels was fewer than 10%, the bad 

channels were interpolated using four nearest ‘good’ 

neighbors, as described in [6].  

Each block of 30 trials for the ML and CC conditions were 

subdivided into six sets of five trials, where the 1
st
 set was 

made up of trials 1-5, the 2
nd

 was comprised of trials 6-10 

etc. (Figure 1). These sets were then employed when 

averaging both the EEG and behavioral results. This step 

was used in the EEG analysis to ensure a high signal to noise 

ratio and was also carried out in the behavior data to allow 

for statistical testing with the EEG data. To account for inter-

participant variability, each participant’s behavioral and 

electrophysiological data was normalized with respect to the 

first set of trials. 

Average event related potentials (ERPs) were calculated for 

each participant using seven frontal-central electrodes (F1, 

Fz, F2, FC1, FCz, FC2 and Cz (Figure 2). Individual 

participant ERPs were calculated for each set across all 10 

ML and CC blocks. Grand Average ERPs were then 

calculated across all participants for both the ML and CC 

condition.  

The P3 is a commonly employed component of EEG data; it 

is a positive component with an onset of 300ms which is 

usually related to a novel stimulus [7] for different sensory 

systems [8] but it is also associated with learning and 

decision making [9]. A recent study has indicated that the 

amplitude of the P3 component may be linked to movement 

learning [10]. The normalized P3 amplitude was calculated 

for each set by taking the mean value of the ERP data in a 

short time interval centered on the peak of the P3 component 

(310 – 350ms).  

Response time (RT) was defined as the length of time taken 

by a participant to maneuver the cursor into the target 

location. Average normalized RTs were calculated for all 

subjects and for all sets. Group average RTs were then 

calculated for comparison with the group average P3 

amplitudes. These group averages and corresponding 

standard errors were plotted on a double-y plot.   

E. Statistical Analysis 

In order to develop a general understanding of the statistical 

differences present in the ERP data, statistical cluster plots 

(SCPs), which tested every possible sub-pair of the six sets 

for each experimental condition, were generated. This 

method has been employed effectively to more fully explore 

statistical significance in larger datasets [11]. To create the 

SCPs a point wise t-test was carried out for each time point 

and for all 64-electrode locations. This method was repeated 

for all 15 possible combinations of two from six sets and for 

each experimental condition. The results of this t-test were 

then displayed as an intensity plot where the x-, y- and z-axis 

respectfully correspond to time, channel location and t-score 

(represented on a color scale). Only t-values with a 

corresponding p-value < 0.05 and occurring in clusters 

greater than 30ms are considered significant which is known 

to increase the likelihood of type II errors through 

 
Figure 1 Top: Sample fames from the movement learning and 

continuous cue conditions progressing from the start of a single trial to 

the location of the target and finally the presentation of the 500ms 

stimulus. Bottom: The subdivision of the block in six sets of five trials. 

 

 
Figure 2 Grand average event related potentials (ERPs) calculated 

using frontal central electrodes as shown. The top plot shows 6 EEG 

traces corresponding to the 6 sets of the movement learning condition. 

The bottom plot shows traces from the continuous cue condition. Grey 

vertical lines 
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overcompensation for type I errors [12]. 

III. RESULTS 

A. Behavioral Results 

The behavioral data from the six subsets were submitted to a 

one-way ANOVA for the ML condition and CC condition. 

The analysis revealed significant difference in the ML 

condition (F(5, 42) =40.7, p<0.0001). Planned comparisons 

demonstrated that this was driven by the 1
st
 set. The analysis 

revealed no significant difference in the CC condition (F(5, 

42) =1.892, p=0.13). 

B. EEG Results 

The grand-average ERPs from the ML experimental 

condition revealed that the amplitude of the P3 component in 

the first set is substantially larger than that observed in any 

of the later sets. It may also be seen that the offset of this 

component is far steeper in amplitude than that of the traces 

corresponding to the later sets (Figure 2). The normalized P3 

data from the six subsets were submitted to a one-way 

ANOVA for both the ML condition and CC conditions. The 

analysis revealed a difference in the ML condition (F(5, 42) 

=7.61, p<0.001). Planned t-test comparisons demonstrated 

that this difference was driven by the 1
st
 set (Figure 3). The 

analysis revealed no significant difference in the CC 

condition (F(5, 42) =0.58, p=0.712), suggesting that the 

normalized P3 amplitude across all six sets are consistent. 

This analysis was carried out on the ML data with the first 

trial being excluded from the set. Trending differences were 

observed in the modified ML data (F(5, 42) 

=2.23, p=0.0687), demonstrating that the observed result is 

not driven by the first trial.  

To further explore the spatiotemporal properties of the ML 

data, point-wise paired t tests between the different sets were 

computed for all 64 electrodes (y-axis) at each time point (x-

axis) are presented in SCP. For each experimental condition 

there were 15 different SCPs outputted, each one 

corresponding to combinations of 2 from 6 sets. Two plots 

exemplary from each experimental condition were selected, 

the 1
st
 set vs. 2

nd
 set and the 4

th
 set vs. 5

th
 set (Figure 4).  

The results from the ML condition show a large cluster of 

significant difference between the 1
st
 set and 2

nd
 set that 

onsets at 300ms and carries on until ~600ms. This time scale 

corresponds to the timing of the P3 component.  This result 

was seen for all SCPs where 1
st
 set was compared with any 

other set (2nd-6th) in the ML data. However, the SCPs for 

the 4
th

 set vs. 5
th

 set shows little significant difference. 

The SCPs for the CC condition show little difference for the 

1st set vs. 2nd and 4th vs. 5th. This result was observed 

across all the different combinations of sets.  

 
Figure 3 These plots show the normalized P3 amplitude and 

response times for the movement learning (top) and continuous cue 

(middle) conditions. The green curve in each plot represents the 

normalized grand average P3 amplitude. The Blue curve corresponds 

to the normalized grand average response times. The bottom plots 

show the distribution of participant P3 amplitude and RT values that 

was used for the linear regression in both experimental conditions as 

labeled. * p < 0.05, **p <0.01 ***p<0.001 

 

 

 

 
Figure 4   SCPs were created to assess the onset and distribution of 

differential ERP responses between the six different sets of data. 

Carrying out a point-wise t-test on two sets across all eight subjects at 

every electrode site created these plots. This process was repeated for 

every possible pair of sets. For the 600ms epoch window t-scores were 

then represented by color values. For clarity, only t values with a 

corresponding p values < 0.05 were shown, and only then when fifteen 

consecutive data points, or 30ms, exceeded this criterion. 
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C. Behavioural Electrophysiological link 

To elucidate the link between the electrophysiological and 

behavioral data, the normalized amplitude of the P3 

component and RT were plotted on a double y-axis plot to 

allow for comparison of line morphology (Figure 3). Visual 

inspection of the two curves indicated that a similar trend 

was present in both data sets.  

To further investigate the relationship of behavioral and 

electrophysiological responses the individual participant 

normalized P3 and RT data for the six sets were submitted to 

a linear regression for the ML and CC conditions. The 

results for the ML condition showed a significant 

relationship, R
2
 = 0.19, F(1, 46) =10.88, p<0.002, thus 

confirming the link between the movement learning behavior 

and electrophysiological data on a sub trial basis. There was 

no significant relationship for the CC (p>0.05).  

IV. DISCUSSION 

This study established a link between the behavioural and 

electrophysiological response for the time course of 

movement learning. The ERP plots clearly show a decrease 

in P3 amplitude over the time course of the ML block, which 

extends the results of Bednark et al. [10]. The amplitude of 

the P3 is largest for the first set trials and decreases to a near 

constant value over the subsequent sets. This observation 

was also evident in the behavioural data. While in the CC 

condition, where there was no learning, the grand average 

ERPs and the behavioural response exhibited no significant 

changes over the time course of the block. 

The results of the regression analysis of single participant 

data between the electrophysiological response and 

behavioral data for the ML condition showed a significant 

relationship, reinforcing the link between the datasets. One 

possible confound to the experimental design is that the 

amplitude of the P3 may be driven by a response to a novel 

stimulus and the decrease is therefore related to decreasing 

novelty. For this reason the control CC condition was also 

included in the experimental protocol. The regression 

analysis results demonstrate that there was no significant 

relationship between the P3 and behavioural performance in 

the CC condition. These findings provide further support to 

the argument that the decrease in the amplitude of the P3 

observed in the ML condition was related to movement 

learning and not novelty. Furthermore, analysis of the SCPs 

demonstrates the robust spatial temporal nature of the 

comparison between the first set and subsequent sets in the 

ML condition while no such differences were observed in the 

CC condition.   

Currently, one of the main behavioral endophenotypes for 

dystonia is an abnormal discrimination of asynchronous 

tactile or visual stimulus which has been attributed to a 

disorder of the SC [13, 14]. In future studies, we intend to 

deploy the movement learning paradigm in dystonic patients, 

to further probe the link between dystonia and abnormal 

subcortical neural processing as well as providing a more 

ecologically relevant behavioural test.  

V. CONCLUSION 

Here, we validated a novel paradigm to investigate 

behavioural and electrophysiological responses for 

movement learning in a healthy control group. Furthermore, 

this novel paradigm would be ideal for deployment in 

clinical population, which are known to have abnormal 

movement learning such as dystonia.   
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