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Abstract— Many studies have estimated joint force using 

surface electromyography (SEMG), however, the time-variant 

characteristic of SEMG is not considered. The change of SEMG 

amplitude is one of manifestations of muscle fatigue. This study 

proposes a force estimation method using SEMG in fatiguing 

contraction. The SEMG amplitude is used to determine the 

signal states by k-means clustering method. According to the 

signal state changes, the corresponding gain is used to estimate 

the force. The target contraction is an isometric abduction of an 

index finger in static and dynamic force conditions for 5 healthy 

subjects. The estimation performance was evaluated by 

percentage of root mean squared error (RMSE). The RMSE for 

the proposed method is 2.5±1.0% under static condition and 

8.8±1.2% under dynamic condition. The accuracy using a 

constant gain calculated at initial time was used to compare with 

the proposed method. The RMSE are 8.9±2.2% under static 

condition and 10.1±2.4% under dynamic condition. The 

proposed method had better performance in both conditions.  

I. INTRODUCTION 

Surface electromyography (SEMG) signals, which 

represent the amount of muscle contraction, can be measured 

while patients cannot move their body but contract their 

muscles [1]. SEMG signals have been used to estimate 

movement intents (e.g., joint force) for control signals of 

assistive robotics such as powered exoskeletons and 

rehabilitation devices. Many studies have been performed to 

estimate joint force using SEMG [2]–[5]. The variability of 

SEMG is a challenging issue in the activities of daily living 

and in clinical applications because this variability can 

deteriorate the estimation accuracy of the movement intention 

and can cause the rehabilitation program to malfunction. 

In previous studies, however, the time-variant characteristic 

of SEMG was not considered. The features of signal, such as 

its amplitude and frequency range, can be varied by muscle 

fatigue despite the usefulness of the signals; the changes of the 

SEMG amplitude and mean frequency indicate the muscle 

fatigue [6]. The time and frequency components of the SEMG 

signals were analyzed to detect the muscle fatigue in static and 

dynamic contraction [7]. The increase of SEMG amplitude 

and the decrease of SEMG mean frequency are regarded as 

signs of muscle fatigue [8]. Because of the variability of signal, 

accurate detection of fatigue state and change in signal-force 

relationship is unavoidable. 

Soo et al. reported a force estimation model for hand grip 
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force estimation during fatiguing contraction [9], [10]. In 

fatigue condition, the low frequency amplitude was increased 

because of the mean frequency shift of the SEMG. However, 

the high frequency amplitude was not changed between 

fatigue and non-fatigue condition. They redefined the 

frequency range (242-365 Hz) to extracted stable SEMG 

signals not changed due to muscle fatigue. However, this 

method extracts the part of the SEMG and limits the 

information of manifestation of muscle fatigue.  

In this paper, we propose the method of joint force 

estimation using time-varying SEMG features in fatiguing 

contraction. The signal states were classified by using the 

amplitude of mean absolute value (MAV) and k-means 

clustering method. The gain, which is relation between the 

force and MAV, was calculated in advance for each signal 

state. According to the signal state changes, the corresponding 

gain was used for estimating force. The proposed force 

estimation method was validated during isometric index 

finger abduction. 

II. MATERIALS AND METHODS 

A. Experimental setup and protocol 

We recruited 5 healthy volunteers (right-handed, 26.2±1.3 

years old) who had no previous experiences with our 

experiments. The protocol (KH2010-25) was approved by the 

Institutional Review Board at KAIST. Written informed 

consent and assent were obtained from the subjects.  

The experimental setup is illustrated in Fig. 1 [11]. A force 

sensor (651AL, Ktoyo, Korea) was used to measure the 

isometric abduction force of the index finger. The SEMG of 

the first dorsal interosseous (FDI) muscle, responsible for the 

flexion and abduction movement at the metacarpophalangeal 

(MCP) joint, was recorded using a bipolar sensor (DE-2.1 

sensor; Delsys Inc., USA) and was amplified 1,000 times 

using a Bagnoli
TM

 system (Delsys Inc., USA). The position of 

the electrodes was chosen to be on the belly of the FDI muscle 

when the subjects performed the isometric abduction of the 

index finger. The force signal was sampled at 1 kHz and were 

low-pass filtered using a finite impulse response (FIR) filter 

with a corner frequency of 20 Hz. The SEMG signals were 

sampled at 1 kHz and were band pass filtered using an FIR 

filter with a frequency range between 20 and 400 Hz. The 

MAV was extracted with a time windows of 200ms in duration 

for every 50ms. The MAV was calculated using the equation 

below. 
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where xi(k) is k
th 

 signal sample, i is i
th

 window, and N is the 

number of samples in window.  
The subjects were asked to sit comfortably on a chair and 

to relax their upper limbs. The right index finger was 
positioned in a custom-fit ring fixed to a force sensor. Other 
fingers and the forearm were fastened to the table using bands. 
The subjects were then instructed to follow the target force. 
The subject’s force measured by the sensor and the target 
force were displayed on the monitor. The subjects performed 
maximal voluntary isometric contraction (MVIC) 3 times 
prior to the main experiments. After the MVIC measurement, 
the subjects performed two experimental sessions: in the first 
session, the subjects were instructed to sustain a contraction 
force of 50% MVIC for 100 s (static force). Second, the 
subjects were asked to follow sinusoidal signals, for which the 
frequency was 0.25 Hz duration of 100 s; the force varied 

from 0 to 50% MVIC. We encouraged subjects to track the 
target force as closely as they can. The SEMG and the force 
signals were normalized for each subject using the maximum 
values measured during the MVIC.  

C. Classification of signal states 

Even before a subject realizes fatigue in his/her muscle, the 

SEMG signal starts to change during work. The purpose of 

classification of signal states is to monitor the signal condition 

and switch between gains, which calibrates the MAV for force 

estimation. The signal states can be defined as shown below. 
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where k is signal state, t is time, and c is the cycle. 

 

The signal states were determined based on the amplitude 

of MAV. For static force, the signal state was divided for each 

time step (every 50 ms). For dynamic force, the signal state 

was divided for each cycle. The peak of the MAV of each 

cycle was used to classify the signal state. The segmentation of 

cycles was divided manually because the duration of cycles is 

not consistent. 
The MAV was used for state classification using the 

k-means clustering method [12]. The k-means clustering 
aimed to group data points into k number of states in which 
each data point belongs to a state of the nearest cluster. Fig. 2 
shows that the signal is classified into 4 states based on the 
amplitude of MAV during static force. Dotted lines indicate 
thresholds between states. Fig. 3 shows the 4 signal states 
using different markers (circle, square, cross, and asterisk). 
The number of states, which is k, was changed from 2 to 20 
and we selected 10 as the maximum number of states based on 
root mean squared error (RMSE) of force estimation. 
Although the number of states is greater than 10, the RMSE 
showed no significant difference. The signal states were 
classified based on the amplitude of MAV. The MAV can 
change to each time step as shown in Fig. 2 and Fig. 3. The 
states were not consistent according to time. This index 

represents only the magnitude of MAV and helps to find the 
corresponding gain for estimating force.  

D. Force estimation according to signal states 

The gain was calculated using a linear equation with the 

measured force and MAV.  

 

/gain force MAV  (2) 

 

For static force, the centers of each state were used for 

calibration. Depending on a signal state, the corresponding 

gain is used to estimate the measured force. For dynamic force, 

the entire data of the first cycle of each signal state was used 

for calibration. The first and last cycles were removed for 

force calibration because these cycles did not guarantee the 

 
Fig. 1. Experimental setup. 

 

 
Fig. 3. Example of 4 signal states for dynamic force. The marker types at 

peak of each cycle indicate the signal states (s1 data). 

 

 

 

 

 
Fig. 2. Example of 4 signal states for static force. Dotted lines are boundary 

between two states (s1). 
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whole cycle duration. The estimated force can be calculated as 

shown below. 

 

,
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where k is signal state, t is time, and c is cycle. 

 

 In addition, we performed a comparison study to determine 

whether the proposed estimation model is more effective than 

conventional methods [13]. In conventional methods, the gain 

was calculated by the MAV from the first time step for static 

force and from the first cycle for dynamic force. The gain was 

consistent for entire data regardless of time. This method 

cannot consider the time-varying features of SEMG, thus the 

error might increase during usage.  

III. RESULTS AND DISCUSSION 

Fig. 4 and Fig. 5 show the example of the estimated force 

for static force and dynamic force by using the proposed 

method and the conventional method with constant gain. Fig. 

4 (a) shows that the estimated force is constant compared with 

the measured reference force because the gain was changed 

according to the signal state. Fig. 4 (b) shows the estimated 

force by constant initial gain increases according to time. The 

amplitude of MAV of s1 increased over time because the 

difference between the reference and the estimated force 

increased.  

In dynamic condition, the proposed method worked better 

than the conventional method based on the difference between 

force sensor and estimation value at peaks. The force 

estimation with constant gain shows large peak values, which 

increased up to 0.8 in Fig. 5 (b). The difference increased as 

time increased. However, the errors between the measured 

force and estimated force were less than static condition in 

both methods as shown in Fig. 5 (a) and (b).  

All subjects had better performance using the proposed 

method in both conditions as shown in Table I. Based on 

RMSE, static condition shows better performance than 

dynamic condition. On the other hand, the conventional 

 
Fig. 5. Force estimation for dynamic force using (a) the proposed 

method when signal states were classified to 10 signal states and (b) 

the conventional method (s1 data). 

TABLE I. THE PERFORMANCE COMPARISON FOR THE PROPOSED 

METHOD AND THE CONVENTIONAL METHOD USING RMSE AND CORR. 

 
Static condition 

 
RMSE 

 
Proposed Control 

s1 3.20 11.19 

s2 1.40 10.68 

s3 2.20 9.53 

s4 3.80 6.36 

s5 2.00 6.96 

 

Dynamic condition 

RMSE CORR 

Proposed Control Proposed Control 

9.62 11.13 0.88 0.87 

7.30 7.39 0.94 0.94 

7.92 8.36 0.88 0.88 

10.10 13.48 0.88 0.89 

9.19 9.99 0.86 0.88 

 

 
Fig. 4. Force estimation for static force using (a) the proposed method 

when signal states were classified to 10 signal states and (b) the 

conventional method (s1 data). 
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method had similar the RMSE values compared with the 

proposed method in dynamic condition. The reason of this 

result is because fatigue was not induced equally over both 

conditions. The dynamic condition was composed of small 

force which is less than 50% MVIC for most part except the 

peaks. The correlation values were similar in both methods. 

The phase of force increase and decrease were not different 

because the force was estimated using the linear equation for 

both methods. 

IV. CONCLUSION 

We proposed the joint force estimation using time-varying 

SEMG features in fatiguing contraction. 5 healthy subjects 

performed the isometric index finger abduction in static and 

dynamic force condition. The time-varying characteristic of 

SEMG was considered to estimate the force. The amplitude of 

SEMG is used to determine the signal states by the k-means 

clustering method. According to the change of signal states, 

different corresponding gain is used to estimate the force. The 

estimation performance was evaluated by the percentage of 

root mean squared error (RMSE). The proposed method had 

better performance compared to the conventional method, 

which used a constant initial gain. The proposed method could 

be widely applied to estimate the force in fatiguing conditions. 

In further studies, the potential use of this approach with 

unknown signals (e.g., non-sinusoidal or impulsive force 

profiles, different/reduced cycle time) should be validated for 

practical application to control of prosthesis. By considering 

more features such as frequency and changing rate of features, 

the proposed method will also be applied to force-varying 

conditions, mimicking practical usages. 
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