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Abstract— A novel three-stage algorithm for detection of
fixations and smooth pursuit movements in high-speed eye-
tracking data is proposed. In the first stage, a segmentation
based on the directionality of the data is performed. In the
second stage, four spatial features are computed from the data
in each segment. Finally, data are classified into fixations and
smooth pursuit movements based on a combination of the
spatial features and the properties of neighboring segments.
The algorithm is evaluated under the assumption that the
intersaccadic intervals represent fixations in data recorded
when viewing images, and mainly smooth pursuit movements in
data recorded when viewing moving dots. The results show that
the algorithm is able to detect 94.3% of the fixations for image
stimuli, compared to a previous algorithm with 80.4% detected
fixations. For moving dot stimuli the proposed algorithm detects
86.7% smooth pursuit movements compared to 68.0% for the
previous algorithm.

I. INTRODUCTION

Measurement of eye movements is an important tool in
basic research in, e.g., visual attention, perception [1], and
cognition, as well as for studies investigating the functional-
ity of the brain [2]. In these studies, the eye-tracking signal
is used to investigate the different kinds of eye movements
and their relationships to the underlying processes in the
brain [3]. The two most common types of eye movements
are the fixations and the saccades. Fixations are when the
eyes are more or less still and visual information is gathered,
and the saccades are the fast movements when the eyes
are redirected from one position of interest to the next [4].
These types of eye movements are the most common ones
when the stimuli are static, i.e., when images or texts are
used. Recently, the interest in using dynamic stimuli, such
as video clips, has been growing [5]. When there are moving
objects in the stimuli, the eye movement smooth pursuit
will also occur, corresponding to that the eyes are tracking
the moving object. In order to be able to perform the eye
movement smooth pursuit, a moving object is needed [6].
Since the focus for a long time has been on static stimuli,
most algorithms are not developed to handle smooth pursuit
movements. When these algorithms are applied to signals
recorded during dynamic stimuli, the smooth pursuit move-
ments will be spread into other types of movements and
make the interpretation of these difficult, e.g., smooth pursuit
movements may typically be erroneously classified as very
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long fixations with very short saccades in between [7]. Many
of the measures that earlier have been used for analysis and
interpretation of the eye movements during static stimuli, are
based on characteristics of the fixations, e.g., the duration of
fixations and the number of fixations [4]. When dynamic
stimuli are used, these measures are still of interest and
in order to be able to draw correct conclusions about the
underlying processes, a robust algorithm for separation of
fixations and smooth pursuit movements is needed.

Since the signal characteristics of fixations and smooth
pursuit movements are overlapping [8], classification of
fixations in the presence of smooth pursuit movements is a
difficult task [5], [9]. A few algorithms developed for smooth
pursuit movements detection in high-speed eye-tracking data
have been proposed. In [9], three algorithms for detection
of saccades, fixations, and smooth pursuit were evaluated.
The outcome of the comparison was that an algorithm that
uses a combination of velocity and dispersion (I-VDT), was
performing best of the compared algorithms, and was less
sensitive to changes in the parameter settings. An algorithm
that makes use of the directional information in the data is
the algorithm proposed by [10], which uses principal com-
ponent analysis in combination with a velocity threshold to
distinguish between saccades, fixations, and smooth pursuit
movements. The algorithm was used to analyze saccades
in humans and monkeys watching short video clips, but
the detection performance was not further evaluated by the
authors. There are a few algorithms developed for mobile
eye-trackers, see [11], [12]. To our knowledge, there is today
no commercial algorithm for separation between fixations
and smooth pursuit movements.

In this paper, we propose a novel algorithm for separation
between fixations and smooth pursuit movements for high-
speed eye-tracking data recorded during static and dynamic
stimuli, i.e., images and moving dots. The proposed algo-
rithm is evaluated by comparing the results to that of the
I-VDT algorithm, which was the best performing algorithm
in a previous study [9].

II. METHOD

A. Preprocessing

The proposed algorithm is applied to the intersaccadic in-
tervals resulting from the algorithm in [13], i.e., the intervals
between the detected saccades, postsaccadic oscillations, and
blinks. Since neither fixations nor smooth pursuit movements
physiologically can have a velocity higher than 100◦/s [14],
the sample-to-sample velocities of the intervals are computed

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 3797



and all samples in the beginning and/or in the end of the
interval that are exceeding this threshold are removed.

B. Preliminary segmentation based on direction

Each intersaccadic interval is divided into windows, wi,
of length tw ms, with an overlap of to ms. For all x- and y-
coordinates contained in the window, the sample-to-sample
directions are computed. The sample-to-sample direction,
α(n), is the angle of the line between two consecutive
coordinate pairs to the x-axis. In order to segment the signal
based on the directional information, the sample-to-sample
directions in each window are investigated using a Rayleigh
test [15]. The p-value of the test, Pi, is computed for each
window i. Since there is an overlap between the windows,
each pair of x- and y-coordinates may belong to more than
one window. The mean value of Pj , for all windows j which
sample k belongs to is computed as,

Pmean(k) =
1

K

K∑
j=1

Pj (1)

where K is the number of windows each sample belongs
to, k = 1, 2, ...,M , and M is the number of samples in
the intersaccadic interval. All consecutive samples in the
interval satisfying either Pmean(k) ≥ ηP or Pmean(k) <
ηP are grouped into preliminary segments sharing similar
properties in terms of consistent or non consistent directions.
These preliminary segments are further analyzed in the next
step.

C. Evaluation of spatial features in the position signal

For all preliminary segments with a duration longer than
tmin, four parameters, pD, pCD, pPD, and pR, are calculated.
These parameters describe the dispersion (D), the consistency
in the direction (CD), the positional displacement (PD), and
the range (R) of the segment. In order to measure the dis-
persion, Principle Component Analysis (PCA) is employed.
The first principle component determines the direction in
which the segment has its largest variance and the second
principle component is chosen orthogonally to the first
principle component. The parameter, pPD, is calculated as
the ratio between the lengths of the projections of the data
to the first and the second principle component, dpc1 , and
dpc2 , respectively.

pD =
dpc2
dpc1

(2)

As proposed in [10], the parameter, pD, measures if the
segment is more spatially spread in one direction than in
the other, i.e., a value of pD close to one means that the
segment is equally spread in both directions.

The second parameter, pCD, measures if the segment has
a consistent direction or not. It is determined by computing
the Euclidean distance (ED) between the starting and ending
positions of the interval, dED, and comparing it to dpc1 .

pCD =
dED

dpc1
(3)

Hence a value of pCD lower than one corresponds to that
the range of the data in the segment is much larger than the
actual distance between the starting position and the ending
position. The third parameter, pPD, measures the relationship
between dED and the trajectory length (TL) of the data in
the segment, dTL.

pPD =
dED

dTL
(4)

This third parameter reflects the trajectory length of the
segment compared to the positional displacement of the
interval, i.e., a straight line will have pPD equal to one.

The fourth parameter, pR, measures the absolute spatial
range of the segment, and is computed as

pR =
√

(maxx−minx)2 + (max y −min y)2 (5)

where x and y are the x- and y-coordinates in the segment.
The four parameters are calculated for each segment,

and are compared to individual thresholds resulting in one
criterion for each parameter.

1) Dispersion: pD < ηD
2) Consistent direction: pCD > ηCD

3) Positional displacement: pPD > ηPD

4) Spatial range: pR > ηmaxFix

D. Fixation and smooth pursuit movement classification

The segments are divided into three different categories,
depending on how many criteria the parameters are satisfy-
ing. All segments where none of the criteria are satisfied, are
classified as fixations, all segments with all criteria satisfied
are classified as smooth pursuit movements, and all segments
where 1-3 criteria are satisfied are placed in a third cate-
gory, containing uncertain segments. Consecutive segments
belonging to the same category are grouped together.

The segments in the third category are segments which do
not have properties that are only typical for fixations or only
typical for smooth pursuit movements. The next step is to re-
categorize these segments into either the fixation or smooth
pursuit movement category, depending on which category
the segments are most similar to, and which category the
neighboring segments belong to.

The categories of the other segments in the interval gives
information about if the uncertain segment is part of a larger
fixational interval or a larger smooth pursuit interval. First,
the uncertain segment is investigated, by evaluating the result
of criterion 3). If criterion 3) is satisfied, the uncertain
segment is most similar to a smooth pursuit movement and
the spatial range, pR, is recalculated as follows. The spatial
range of the other segments in the interval that are classified
as smooth pursuit movements and has a mean direction that
does not differ more than φ to the mean direction of the
uncertain segment, are added to the spatial range of the
segment. If the merged segment has a pR > ηminSmp, the
segment is classified as a smooth pursuit and otherwise as a
fixation. If, on the other hand, the segment is most similar
to a fixation, i.e., criterion 3) is not satisfied, it is criterion
4) that will decided if the segment is classified as a fixation.
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TABLE I
PARAMETER SETTINGS FOR THE PROPOSED ALGORITHM

Parameter Value Description
tw 22 ms window size
to 6 ms overlap of the windows
ηP 0.01 significance level for the Rayleigh test
ηD 0.25 threshold for pD
ηCD 0.8 threshold for pCD

ηPD 0.30 threshold for pPD

ηmaxFix 4.8◦ threshold for max spatial range
for a fixation

ηminSmp 1.2◦ threshold for min spatial range
for a smooth pursuit movement

φ π
4

max difference in mean direction
for a smooth pursuit movement

tmin 40 ms minimum fixation duration

TABLE II
PERCENTAGE OF FIXATIONS AND SMOOTH PURSUIT MOVEMENTS IN THE

INTERSACCADIC INTERVALS, FOR IMAGE AND MOVING DOT STIMULI,
FOR PROPOSED ALGORITHM (PA) AND I-VDT ALGORITHM.

Image Moving dot
Measure PA I-VDT PA I-VDT

% Fixations 94.3 80.4 13.3 32.0
% Smooth pursuit 5.67 19.6 86.7 68.0

If criterion 4) is not satisfied, the segment is classified as a
fixation otherwise as a smooth pursuit movement.

III. EXPERIMENT AND DATABASE

The eye-tracking signals used in this paper were collected
during an experiment described in [13], where a tower
mounted eye-tracker with sampling frequency 500 Hz, from
SensoMotoric Instruments (Teltow, Germany) was used. The
experiment was designed specifically for evaluation of event
detection algorithms when smooth pursuit movements are
present. The experiment includes static images and short
video clips as well as artificial stimuli, e.g., dots moving
in different directions and speeds. In the present paper, eye
movements of 14 participants recorded during image and
moving dot stimuli are evaluated.

IV. RESULTS

All results presented in this section are generated using the
settings shown in Table I. The performance of the algorithm
is evaluated by computing the percentage of time in each
type of event for the two different types of stimuli, images
and moving dots. For the image stimuli, it is expected to
have as close to 100% detected fixations as possible and in
the moving dot stimuli the expectation is to have an as large
amount of detected smooth pursuit movements as possible.
Since it takes some time for the eye to start to move after the
dot started to move, the first interval, before the first saccade,
is removed from all moving dot recordings when calculating
the percentage of time in smooth pursuit and fixations for
moving dot stimuli. The results for the proposed algorithm
and the I-VDT algorithm are presented in Table II, where
the proposed algorithm detects 94.3% of the total number
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Fig. 1. Box plots of the classification proportion for image stimuli, for
the proposed algorithm (PA) and I-VDT algorithm, for fixations (Fix) and
smooth pursuit movements (SP). In the box, the middle mark is the median
together with the 25th percentile and 75th percentile on the edges. Outliers
are marked with (+).
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Fig. 2. Box plots of the classification proportion for moving dot stimuli,
for the proposed algorithm (PA) and I-VDT algorithm, for fixations (Fix)
and smooth pursuit movements (SP). In the box, the middle mark is the
median together with the 25th percentile and 75th percentile on the edges.
Outliers are marked with (+).

of samples as fixations in the image stimuli and 86.7%
of the total number of samples as smooth pursuit in the
moving dot stimuli. This can be compared to the results of
the I-VDT algorithm with 80.4% and 68.0%, respectively. A
more detailed description of the performance of the proposed
algorithm is shown in Figs. 1 – 2, where the performance
for the images and moving dots are shown, separately.

V. DISCUSSION

An algorithm for separation of fixations and smooth
pursuit movements was developed. The algorithm has been
evaluated using a database containing data recorded during
both static and dynamic stimuli and the performance has been
evaluated by comparing the detections of the algorithm to the
detections of the I-VDT algorithm described in [9]. When
comparing the results of the two algorithms, the proposed
algorithm performs considerably better than the I-VDT al-
gorithm. The proposed algorithm has a better discrimination
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performance and lower spread in classification proportions,
for both image and moving dot stimuli, see Figs. 1– 2.

By using the four spatial features combined with informa-
tion about the neighboring segments, the proposed algorithm
takes more information into account when classifying the
signal, compared to the I-VDT algorithm that only uses a
dispersion threshold to distinguish between the fixations and
the smooth pursuit movements. Future work will investigate
if an algorithm that combines the four features, and optimize
them in a four dimensional space will increase the perfor-
mance of the algorithm.

The evaluation of the algorithms was divided into two
groups, image stimuli and moving dot stimuli. By dividing
the data into these two groups, the performance of the
algorithm is evaluated by assuming that all intersaccadic
intervals for the image stimuli are fixations and a majority
of intersaccadic intervals for the moving dot stimuli are
smooth pursuit movements. This is not always true, and
especially not for the moving dot stimuli, where it is possible
that the eye is still even though the dot is moving on
the screen, e.g., in the beginning of the movement. By
removing the first interval for each new dot that appeared,
the percentage in smooth pursuit movements better reflects
the actual movement of the eye in relation to the dot.

For the proposed algorithm and image stimuli, there were
5.67% samples detected as smooth pursuit movements in
the intersaccadic intervals. These detections are caused by
drift during fixations, small movements of the head, and
remainders from the saccade and postsaccadic oscillation
detection which are not distinguishable from smooth pursuit
movements when only analyzing data from one eye. The
13.3% of detected fixations during moving dot stimuli could
reflect that the eye does not move all the time, even though
the dot is moving. Thus, it is expected with a certain amount
of detected fixations when viewing moving objects.

There are several reasons to why separation between
fixations and smooth pursuit movement is useful and im-
portant. Today, the separation has been mainly used in
human-computer interaction using low speed eye-trackers,
e.g., to stabilize the cursor during gaze control of a computer
screen [16], and in interaction with information screens [17].
By having the possibility to separate between the two event
types also for high-speed eye-trackers when dynamic stimuli
are shown, is paving the way for studies where the properties
of the two events can be investigated and compared. Two ex-
amples of such applications are, e.g., the difference between
expert and novices in smooth pursuit characteristics when
watching dynamic stimuli [18] and the amount of smooth
pursuit when viewing natural stimuli as a diagnostic tool for
neural disorders [19].

VI. CONCLUSIONS

Separation between fixations and smooth pursuit move-
ments is a difficult task, since many of the signal charac-

teristics of the two event types are similar. In this work,
a novel algorithm for discrimination between fixations and
smooth pursuit movements in high-speed eye-tracking data
is developed and compared to an existing algorithm. The
proposed algorithm performs considerably better than the
compared algorithm for detection of the two events.
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