
  

 

Abstract— Assessments of functional connectivity between 
brain networks is a fixture of resting state fMRI research. Until 
very recently most of this work proceeded from an assumption 
of stationarity in resting state network connectivity.   In the last 
few years however, interest in moving beyond this simplifying 
assumption has grown considerably. Applying group temporal 
independent component analysis (tICA) to a set of time-varying 
functional network connectivity (FNC) matrices derived from a 
large multi-site fMRI dataset (N=314; 163 healthy, 151 
schizophrenia patients), we obtain a set of five basic correlation 
patterns (component spatial maps (SMs)) from which observed 
FNCs can be expressed as mutually independent linear 
combinations, i.e., the coefficient on each SM in the linear 
combination is maximally independent of the others.  We study 
dynamic properties of network connectivity as they are 
reflected in this five-dimensional space, and report stark 
differences in connectivity dynamics between schizophrenia 
patients and healthy controls. We also find that the most 
important global differences in FNC dynamism between patient 
and control groups are replicated when the same dynamical 
analysis is performed on sets of correlation patterns obtained 
from either PCA or spatial ICA, giving us additional 
confidence in the results. 

I. INTRODUCTION 

Connectivity between the functional networks obtained 
from fMRI data by various methods, including blind source 
separation techniques such as independent component 
analysis (ICA), continues to be a central focus of much 
resting-state fMRI research. Until very recently, most of 
these studies have worked from a simplifying assumption 
that functional network connectivity (FNC) is a stationary 
characteristic of the brain at rest, at least on the time scale of 
a typical fMRI scan. Interest is emerging [1,2,3] however in 
the dynamical properties of network connectivity. One 
approach [1,3] seeks to characterize time-varying dynamic 
FNCs (dFNCs) in terms of a small set of prototype 
connectivity states that emerge from K-means clustering of 
observed dFNCs. In this framework, individual dFNCs are 
replaced by the prototype state they most resemble. A 
subject is in exactly one state at any given time. Our 
approach models the dFNCs as weighted sums of maximally 
statistically independent connectivity patterns (Fig. 1 (A)) 
called "states". Weights can be positive or negative (Fig. 1 
(B), Fig. 2 (boxed)), indicating additive contribution of 

 
R. L. Miller is with The Mind Research Network, Albuquerque, NM 

87106 USA (e-mail: rmiller@mrn.org). 

M. Yaesobi is with The Mind Research Network, Albuquerque, NM 

87106 USA and the Dept. of Electrical and Computer Engineering, Univ. of 

New Mexico, Albuquerque, NM USA (email: mazya@ece.unm.edu) 

V. D. Calhoun is with The Mind Research Network, Albuquerque, NM 

87106 USA and the Dept. of Electrical and Computer Engineering, Univ. of 

New Mexico, Albuquerque, NM USA (phone: 505-272-5028; fax: 505-272-

8002; e-mail: vcalhoun@mrn.org). 

either the connectivity pattern itself, its so-called pro-state, 
or the connectivity pattern in its anti-state form, with signs 
flipped: correlations become anti-correlations and vice-
versa. In this framework a subject is in all states to some 
degree at all times. Weights do not sum to one - otherwise 
they would not be independent - and it is possible to 
simultaneously have same-sign high magnitude 
contributions from more than one state. This approach was 
motivated by a desire to understand network connectivity 
dynamics in terms of (not necessarily observable) patterns, 
possibly clusters, of signed network pair correlations that 
"pipe in" and fade out of observed time-varying FNCs in a 
relatively independent manner.  While our main interest was 
in studying FNC dynamics as reflected in temporally 
independent correlation patterns drawn from the observed 
data, one could ask similar questions about how connectivity 
dynamics project onto data-driven collections of correlation 
patterns optimized differently. The main point is to have a 
set of correlation space basis patterns around which to 
organize and analyze complex dynamical variations in 
network connectivity. For example, the collection could 
maximize pairwise spatial independence between the 
correlation patterns (using spatial ICA), or could produce 
mutually orthogonal correlation patterns presented in order 
of maximal variance retention (using PCA). The basis 
pattern sets produced by tools optimizing different 
objectives will naturally present different individual and 
relative features. We focus here on dynamical properties that 
are sufficiently generic to allow for an interesting side-by-
side comparison of tICA, sICA and PCA results. Interesting 
group differences in dynamical behavior of particular tICA 
correlation patterns, interpretable with greater focus on 
specific network-pair correlations are reported in [4]. 

II. MATRIALS AND METHODS 

A. Participants, Preprocessing, Network Identification and 

Dynamic Functional Connectivity 

Some basic information about data collection, 
preprocessing, network identification and computation of 
dynamic functional connectivity are summarized in this 
section. Details are available in [1]. Resting state functional 
magnetic resonance imaging data (162 volumes of echo 
planar imaging BOLD fMRI , TR = 2 sec.) was collected 
from 163 healthy controls (117 males, 46 females; mean age 
36.9) and 151 age and gender matched patients with 
schizophrenia (114 males, 37 females; mean age 37.8) 
during eyes closed condition at 7 different sites across 
United States. After standard preprocessing, the fMRI data 
from all subjects was decomposed using group ICA into 47 
functionally meaningful network spatial maps 
(http://icatb.sourceforge.net) of which 47 were identified as 
functionally meaningful resting state networks (RSNs). 
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Subject specific spatial maps (SMs) and timecourses (TCs) 
were obtained from the group level spatial maps via spatio-
temporal regression. The timecourses were detrended, 
despiked and subjected to some additional postprocessing 
steps. Dynamic functional connectivity (dFNC) between 
RSN timecourses was estimated using a sliding window 
approach. Following protocols from recent studies on 
dynamic connectivity [1, 2], we use a tapered rectangular 
window length of 22 TRs (44 seconds), slid 1 TR at each 
step, and computed pairwise correlations between RSN time 
courses within these windows. 

B. Temporally Independent Connectivity Patterns  

Recent work [1, 2] on functional network connectivity 
dynamics has used clustering algorithms to identify a small 
set of prototype connectivity "states." Observed dFNCs are 
replaced by the prototype states they most resemble, 
allowing connectivity dynamics to be described as a process 
of moving from one to another of these summary states. In 
this work, we further develop the higher-dimensional 
framework introduced in [5] for studying network 
connectivity dynamics. The objective here is to express 
time-varying FNCs as weighted sums of correlation patterns 
whose contributions change independently of each other in 
time (Figs. 1 and 2), allowing us to develop a richer picture 
of the interplay between connectivity patterns that are 
strongly present in the data but: 

 The patterns can contain common sets of network-
pairs with given correlation strengths. 
 

 The patterns themselves may not strongly resemble 
empirically observed FNCs. 

To achieve this goal we apply group temporal independent 
component analysis (tICA) to dFNC matrices concatenated 
along the subject x time dimension, decomposing this 
concatenated structure into five maximally mutually 
independent timecourses (because we are performing this 
analysis at the group level, these are in fact subject x time 
"courses"), each with an associated connectivity pattern or 
spatial map that is shared across subjects (Fig. 2). Abusing 
language a bit, we will refer to the connectivity patterns 
(spatial maps) as components even though it is the subject x 
timecourses that are being estimated by tICA.  

 
Fig. 1 (A) Schematic outline of group temporal ICA (tICA). (adapted from [1]); 

(B) Subject's component TCs, (C) transformed to signed quartile discretization, 

(D) with level changes marked in red; (E) Example of converting vector of TC 

values to "meta-state" of the discretized levels. 

C. Spatially Independent Connectivity Patterns and dFNC 

Principal Components 

We perform a group (spatial) independent component 

analysis (GICA) on the dFNC data using protocols directly 

analogous those employed for higher-dimensional fMRI data 

[1, 2]. The model order of five, used in all decompositions 

presented here, was chosen in an effort to balance 

tractability of complex linearly additive effects with a desire 

for richly featured basis pattern collections. The basis 

patterns (Fig. 3 (top)) obtained by group sICA are 

maximally spatially (cell-wise) independent, but neither 

mutually orthogonal nor informative about the way dFNC 
variance is organized. For a set of mutually orthogonal basis 

patterns whose structure explicitly reflects dominant 

directions of data' variance, we use the first five components 

of a PCA along the subject x time dimension of the 

concatenated dFNC data.     

 
 
Fig. 2 (Non-boxed) The tICA component spatial maps (basis patterns) with 

functional modules labeled: subbcortical (SC), auditory (AUD), visual (VIS), 

sensorimotor (SM), attentional/cognitive control (CC), default mode (DM), 

cerebellar (CB); (Boxed) One dFNC expressed as weighted combination of the 

basis patterns. 

C. Timecourse Discretization 

To work over a more tractable state space, we discretize the 
timecourses (Fig. 1 (B), (C), (E)) according to their signed 
quartile: the vector [w1

(k) (t), w2
(k) (t), w3

(k) (t), w4
(k) (t), w5

(k) 

(t)] of subject k's time t component weights is converted to 
[1

(k) (t), 2
(k) (t), 3

(k) (t), 4
(k) (t), 5

(k) (t)] where iϵ 
±±±± indicating the quartile of the (same-
sign) weights each wi

(k) falls into. When i
(k) (t) = ℓ ϵ 

±±±± component i is said to be occupied at 
level ℓ. When ℓ is positive, it is state i (or pro-state i) is 
occupied; when ℓ is negative, anti-state i is occupied. The 
length-five vectors to [1

(k) (t), 2
(k) (t), 3

(k) (t), 4
(k) (t), 5

(k) 

(t)] are referred to as meta-states. The timecourses for sICA 
(resp. PCA) correlation patterns are obtained by regressing 
each subject's dFNC data at each time window on the set of 
sICA (resp. PCA) correlation patterns. Discretization of 
sICA timecourses and principal component timecourses 
follows the tICA procedure exactly. 
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Fig. 3 (Top) Spatial ICA basis patterns; (Bottom) PCA basis patterns, all with 

functional modules labeled: subbcortical (SC), auditory (AUD), visual (VIS), 

sensorimotor (SM), attentional/cognitive control (CC), default mode (DM), 

cerebellar (CB) 

D. Diagnosis Effects 

We employ a simple linear model,  
                                                     

to estimate the effect of diagnosis on the various measures 
investigated here. The diagnosis variable is binary, with SZ 

coded as '1' and HC as '0', so              indicates a 

positive correlation with SZ and              shows a 

negative correlation with SZ. We generally report or display 

the value of            when its false discovery rate (FDR) 

corrected p-value is less than 0.05.  

III. RESULTS 

In preliminary work with tICA connectivity patterns, we 
investigated many features of the time-varying weighted 
contributions made by tICA-derived correlation patterns to 
observed dFNCs. Diagnostic status (schizophrenia patient 
(SZ) or healthy control (HC)) had highly significant effects 
on most of our dynamical measures. We focus here however 
on four global metrics of connectivity dynamism:  

1) The number of times that subjects switch from one 
meta-state to another (denoted by s) 

2) The number of distinct meta-states subjects occupy 
during their scans (denoted by n) 

3) The range of meta-states subjects occupy, ie., the 
largest L2 distance between occupied meta-states 
(denoted by r) 

4) The overall distance traveled by each subject 
through the state space (the sum of the L2 distances 
between successive meta-states, denoted by d) 

The first measure captures how often a subject switches 
between meta-states, without accounting for how many or 
how divergent the meta-states are (one could switch between 
two very similar states in rapid succession). The second 
records the number distinct meta-states are passed through. 
A very high ratio of n to the number of time points implies 
high s; a very high ratio of n to the number of possible meta-
states implies high r. The third measure indicates how 
divergent the meta-states occupied are. The value of r, 
except when identically zero, need not imply anything about 
s or n. It is a lower bound for d. The final measure, d, 
incorporates information from the other three without being 
fully determined by them. It is maximized when a subject 
switches frequently between two meta-states at distal 
boundaries of the state space. 

A. General Reduction of Dynamic Range and Fluidity in 

Schizophrenia Patients  

We find consistent evidence of reduced FNC dynamism 
among schizophrenia patients.  

1. SZ exhibit diminished dynamic fluidity: 
a. SZ switch less frequently between five-

dimensional meta-states (Fig. 4) 
b. SZ occupy a smaller number of distinct 

meta-states during their scans (Fig. 5 ). 
2. SZ operate over a restricted in dynamic range: 

a. SZ remain trapped in a smaller radius 
hypersphere of the state space (Fig. 6) 

b. SZs cover less distance as they move 
through the state space (Fig. 7). 
 

 
Fig. 4  Diagnosis effect on s, the number of meta-state changes 

(along vertical axis), evaluated for basis patterns generated by 

tICA (left), sICA (middle) and PCA (right). 

 

Fig. 5 Diagnosis effect on n, the number of meta-states realized (along 

vertical axis), evaluated for basis patterns generated by tICA (left), 

sICA (middle) and PCA (right). 

As there are many ways to approach multivariate 

connectivity and dynamics, we evaluated several approaches 

to see how sensitive the main findings were to the 
underlying analytic pathway (specifically the method of 

decomposing dynamic FNC data). Encouragingly, these 

findings hold regardless of how the basis correlation patterns 

were generated (tICA, sICA or PCA). In light of emerging 
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evidence for greater high frequency content in SZ network 

timecourses [6], the overwhelmingly suppressive effect of 

SZ diagnosis on global measures of connectivity dynamism 

suggests a complicated picture with respect to SZ and 

functional networks. Somewhat paradoxically, although SZ 

network timecourses carry more rapidly fluctuating content 
than those of healthy controls, the overall structure of 

pairwise network correlative relationships (as projected onto 

tICA, sICA or PCA-produced basis patterns) is evidently 

more static for SZ than HC. 

 
Fig. 6 Diagnosis effect on the span (maximum L2 distance), r, between 

realized meta-states (along vertical axis), evaluated for basis patterns 

generated by tICA (left), sICA (middle) and PCA (right). 

 
Fig. 7 Diagnosis effect on the total distance (summed L2 distances 

between successive meta-states), d, traveled through the state space 

(along vertical axis), evaluated for basis patterns generated by tICA 

(left), sICA (middle) and PCA (right). 

IV. DISCUSSION 

  We extended a framework introduced in [5] for analyzing 
dynamic network connectivity in terms of small sets of 
correlation patterns that combine additively to form (or 
approximate) observed time-varying dFNCs. Our main 
interest has been in patterns whose simultaneous 
contributions (obtained using group temporal ICA) are, in 
magnitude and direction, maximally mutually independent. 
The general framework we develop for higher-dimensional 
analysis of connectivity dynamics should carry over easily 
however to settings with different goals and assumptions. To 

probe the role of decomposition algorithm on results, we 
repeated our analysis for basis patterns produced using two 
other common data-driven methods (group spatial ICA and 
principal component analysis). The power of this higher-
dimensional data-driven approach is demonstrated by the 
strong statistical evidence it provides for diminished 
dynamic fluidity (Figs. 4 and 5) and restricted dynamic 
range (Figs. 6 and 7) of network connectivity in 
schizophrenia patients vs. healthy controls. Additional 
confidence in the robustness of the tICA-based results is 
provided by their replicability, with respect to both direction 
and statistical power, when the analysis is performed on 
correlation patterns obtained using spatial ICA and PCA. 
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