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Abstract— Analysis of electroencephalography (EEG)
recorded during movement is often aggravated or even
completely hindered by electromyogenic artifacts. This is
caused by the overlapping frequencies of brain and myogenic
activity and the higher amplitude of the myogenic signals.

One commonly employed computational technique to reduce
these types of artifacts is Independent Component Analysis
(ICA). ICA estimates statistically independent components (ICs)
that, when linearly combined, closely match the input (sensor)
data. Removing the ICs that represent artifact sources and
re-mixing the sources returns the input data with reduced
noise activity. ICs of real-world data are usually not perfectly
separated, actual sources, but a mixture of these sources.

Adding additional input signals, predominantly generated
by a single IC that is already part of the original sensor data,
should increase that IC’s separability. We conducted this study
to evaluate this concept for ICA-based electromyogenic artifact
reduction in EEG using EMG signals as additional inputs.

To acquire the appropriate data we worked with nine human
volunteers. The EEG and EMG were recorded while the study
volunteers performed seven exercises designed to produce a
wide range of representative myogenic artifacts.

To evaluate the effect of the EMG signals we estimated
the sources of each dataset once with and once without the
EMG data. The ICs were automatically classified as either
’myogenic’ or ’non-myogenic’. We removed the former before
back projection. Afterwards we calculated an objective measure
to quantify the artifact reduction and assess the effect of
including EMG signals.

Our study showed that the ICA-based reduction of elec-
tromyogenic artifacts can be improved by including the EMG
data of artifact-inducing muscles. This approach could prove
beneficial for locomotor disorder research, brain-computer
interfaces, neurofeedback, and most other areas where brain
activity during movement has to be analyzed.

[. INTRODUCTION

Analysis of brain activity during exercise can be used
for neurofeedback systems to assist athletes in their training
[1], [2]. The system could provide instant and customized
feedback and thereby increase training efficiency. Clinical
and research applications include improved insight into the
relation between locomotion and neural activity, e.g. to
control a robotic prosthesis or help understand neurological
diseases, as well as analysis of cognitive processes with
respect to motivated natural behavior [3], [4], [5].
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Electroencephalography (EEG) measures the electrical po-
tentials inside the brain using scalp electrodes. The signals
at each electrode are the result of a linear combination of
the electric activity of the brain’s neurons. EEG is the most
often used, non-invasive, technique to measure brain activity
during movement. Other popular functional brain imaging
methods, like single-photon emission computed tomography,
depend upon the patient to abide in a resting position and
expose the patient to ionizing radiation. EEG equipment on
the other hand is light enough to be used during movement.
EEG also satisfies the temporal resolution requirements to
accurately measure neural activity [4].

EEG measurements are susceptible to many different types
of artifacts and are easily masked because of their low
amplitude (10 uV to 100 uV) [1]. Eye movements, eye blinks,
power-line interference, cardioballistic artifacts, and artifacts
caused by cable movement occur in most EEG recordings
(often even more so during movement) [1], [4], [6].

The EEG electrodes unintentionally measure the electrical
signals produced by some muscles simultaneously to the
brain activity due to their spatial proximity and the elec-
trode’s necessarily low sensitivity [7]. If the measurement is
done while the patient is exercising these interferences ob-
scure most of the neural activity as their amplitude is signif-
icantly higher (100 uV to 1000 uV) [4]. The frequency band
of electromyogenic, or muscle, artifacts (0 Hz to 200 Hz)
overlap the band of neural activity (0 Hz to 30 Hz) [7].

Independent Component Analysis (ICA) algorithms esti-
mate the independent components (ICs) from a linear mixture
of these sources [8]. This concept can be applied to artifact
reduction in EEG data. Removing the ICs representing
the myogenic activity and back projecting the residual ICs
returns the EEG data with reduced muscle artifacts [9].

Including the electromyograpic (EMG) signal of the
artifact-inducing muscles into the ICA decomposition could
improve the model accuracy, as the ICA algorithm could
potentially produce a clearer distinction between neural and
electromyogenic activity. The ICs could have a more distinc-
tive assignment to either neural or myogenic activity and less
components would be a mixture of the two. Clustering the
muscle activity into fewer components would simplify the
artifact reduction process, remove more myogenic artifacts,
and keep more neural sources intact.

In order to objectively determine if including the EMGs
improves the artifact reduction we conducted a study with
nine volunteers. We chose seven different exercises designed
to induce a wide range of myogenic artifacts. These exercises
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should be representative for most muscle artifacts occurring
in EEG recordings. The results of this study should therefore
be beneficial for other applications as well.

II. METHODS
A. Data acquisition

We used a QuickAmp-72 amplifier (Brain Products
GmbH, Gilching, Germany) to record the EEG and the EMG
simultaneously. To achieve consistent electrode placement
we worked with an actiCAP 64 Channel (Brain Products
GmbH, Gilching, Germany) EEG cap. To acquire the real po-
sitions of the electrodes the ELPOS (zebris Medical GmbH,
Isny im Allgdu, Germany) and its software Electrode Guide
ElGuide (zebris Medical GmbH, Isny im Allgiu, Germany)
were used. We placed the EMG electrodes on the left and
right sternocleidomastoid muscle and to the left and right
sagittal plane of the trapezius muscle (Fig. 1).

Nine (four male, five female) healthy volunteers
(age 25 + 2 years, mean =+ standard deviation(SD)) partici-
pated in the study. All participants were in good physical
condition and gave written informed consent. The Ethics
Committee of the University Erlangen-Nuremberg reviewed
and approved the study design beforehand.

During the four isometric contraction exercises the partic-
ipants were asked to force their head against an immovable
object towards different directions: forward, backward, rota-
tion to the left, and rotation to the right. Each recording con-
sisted of eight repetitions with a duration of 15, interrupted
by 30s pauses. The weight lifting was done at a chest press
machine with slowly increasing weight until a sub-maximum
lift was achieved. The participants ran for two minutes on a
h/p/cosmos treadmill (h/p/cosmos sports & medical GmbH,
Nussdort-Traunstein, Germany). The treadmill was set to
2.316ms™!, which is 20 % above the average speed people
transition from walking to running stance, to ensure that the
person was running instead of walking [10]. As the running
was performed indoors the absence of air resistance was
compensated for by setting the inclination of the treadmill
to 1% [11]. Comparing the ergometer and running exercise
required the step and cycling frequencies to be proportionate.
We used an instrumented treadmill with a build in FDM-T
zebris force plate (zebris Medical GmbH, Isny im Allgdu,
Germany) to calculate the mean step frequency and used
this frequency for the ergometer exercise. The resistance of
the ergometer bike, a sanabike 250F (MESA Medizintechnik
GmbH, Benediktbeuern, Germany), was set to SO W.

B. Preprocessing

We used the BrainVision Analyzer 2 (Brain Products
GmbH, Gilching, Germany) to preprocess the data. We
removed high (>70Hz) and low (<0.5Hz) frequency noise
with a band-pass filter. Power-line interference at 50 Hz was
reduced by a notch filter. Ocular artifacts were treated using
a regression model in the time domain [13]. Cardioballistic
artifacts were removed using a template averaging method
[14]. We removed the pause phases in the isometric contrac-
tion and weight lifting exercises. Afterwards the data was
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Fig. 1. EMG electrode positions. B32 and B23 are EEG electrodes.
Electrodes 65 and 67 record trapezius muscle activity. Electrodes 66 and
68 (not visible) record sternocleidomastoid muscle activity. C7 is the
approximate location of the seventh cervical vertebra. First shown in [12].

exported to EEGLab [15], a widely used Matlab (MathWorks
Inc., Natick, USA) toolbox for EEG data, for further analysis.

C. ICA decomposition

Applying ICA on EEG data containing electromyogenic
artifacts returns, in the ideal case, ICs exclusively containing
the brain activity and ICs representing the electrical activity
of the muscles [9]. Setting the latter to zero and back
projection yields the EEG without the myogenic artifacts [9].

Most ICA algorithms run Principle Component Analy-
sis (PCA) beforehand to decorrelate, i.e. sphere, the input
data. The usual choices for ICA-based artifact reduction
in EEG data are the Information Maximization (InfoMax)
algorithm [8] and the FastICA algorithm [16]. A more
recently proposed method is the Adaptive Mixture of In-
dependent Component Analyzers (AMICA) algorithm [17].
AMICA employs a maximum likelihood estimate for mixture
models of ICs and an asymptotic Newton method for the
optimization.

We chose the AMICA algorithm for this study, as it
was shown to be superior to the InfoMax algorithm for
removing electromyogenic artifacts in EEG data [12]. We
used the AMICA implementation by Palmer et al. [18].
We ran AMICA on all datasets using default parameters:
one ICA model, three mixture models for the ICs, and a
maximum of 2000 iterations.

D. ICA component rejection

Selecting which and how many ICs to reject, i.e. setting
which columns of the mixing matrix to zero, greatly im-
pacts the result of the artifact reduction process. In order
to achieve an objective comparison between the two ICA
decompositions (once with and once without the appended
EMG data) we fixed the number of ICs to reject to five.
We furthermore adjusted the PCA algorithm to retain 64
principle components. We therefore removed 5 out of 64
ICs in both cases to allow a fair comparison. We worked
with an automatic classifier that was specifically designed
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to discriminate between electromyogenic and neural ICA
components to reduce user-dependent factors [19].

E. Evaluation methodology

For the assessment of the effect that the EMGs have on
the artifact reduction an objective measure was necessary. In
[12] we introduced a novel measure to calculate the artifact
reduction by measuring features on resting state data and to
compare them to features from the data before and after the
artifact reduction. The steps for calculating the improvement
are shown in Fig. 2. The signal characteristics were computed
on a empirically defined window size of 2000 samples.

We improved the previously shown measure by including
new signal characteristics and performing a best subset
feature selection. The candidate feature set was compiled
from generic features for biosignal classification as well as
expert features, i.e. features adapted to the problem at hand.
The generic features were statistical moments and signal
characteristics [20]. As expert features we calculated the
normalized power above 35Hz, the peak (position) in the
power spectral density (PSD) (measured from O Hz to S0 Hz),
the mean value of the squared derivative, and the maximum
value of the squared derivative. These characteristics should
be able to quantify the degree of EMG contamination in
EEG recordings [7]. Additionally we added features based
on the autocorrelation of the signal, as it has been used suc-
cessfully for muscle artifact detection. These different feature
combinations were compared on data of known improvement
or artifact reduction [21]. These datasets were created by
overlaying a resting state EEG recording with simulated
myogenic activity. The myogenic artifacts were artificially
created by generating a time series from an extracted PSD
of noisy data (of the same participant).

data before clean data after
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reduction reduction
feature feature feature
extraction extraction extraction
I
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averaging: /weraging:
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before improvement after
_ _ da fter
m =1 dpefore

Fig. 2. Flow chart of the evaluation methodology procedure. First shown
in [12].

Using this simulation tool we created data with known
artifact reductions, denoted mgng, in the range of 0% to
100 % [12]:

MSNR = 1 _ SNRbefore (1)
SNRafter

The feature selection process was initialized with an
empirically defined SNR for the artificially created ’before
artifact reduction’ dataset. The SNR for all other datasets,
e.g. 30 % improvement (mgsnr = 0.3) from the fixed starting
point, was calculated by reformulating (1) and solving for
SNRser- Each dataset of known improvement was evalu-
ated with the ’before artifact reduction’ dataset using the
objective measure (with all possible subsets of our candidate
features). The feature combination that showed the lowest
mean absolute error over the complete percentile range was
selected. Afterwards we tested this feature selection on a
disjunct dataset from a different study participant.

III. RESULTS

The feature selection process for the objective measure
returned the following best subset of features:

1) mean

2) standard deviation

3) kurtosis

4) normalized power from 35 Hz to 50 Hz

5) mean value of the autocorrelation

The validation of these features showed a mean absolute
error of 1.20 %.

One measurement had to be completely removed from
the evaluation as it contained mostly non-myogenic arti-
facts (presumably from cable movement). The remaining
62 recordings, respectively the resulting 124 datasets (each
recording once with and once without the EMG data), were
evaluated after the artifact reduction process. Two datasets
(both without EMG data) decreased in their quality, i.e.
the evaluation returned negative values, after the artifact
reduction. For the averaged improvement rates we assigned
these to be zero.

The overall average artifact reduction for all exercises
was 41.3% with and 37.9 % without the EMG data. The
artifact reduction was improved in every exercise except
the ergometer test by including the EMG into the ICA
decomposition (Fig. 3).

IV. DISCUSSION

We increased the accuracy of our previously introduced
objective improvement measure by performing a feature se-
lection on a larger, more diverse candidate set. The absolute
error was reduced from 3.18 % to 1.20 %. The SNRyctore Was
determined empirically and fixed during the feature selection.
We therefore assumed a specific degree of myogenic artifacts
as a starting point. In future research we will perform the
feature selection also with different SNR starting points to
guarantee the accuracy of the objective measure for other
applications.
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Fig. 3. Averaged improvement for each exercise - with and without the
EMG data.

The results of our study showed an averaged increase in
artifact reduction of —0.2 % to 7.4 %, depending on the exer-
cise, if the EMG data is included. The largest improvements
were in the isometric contraction exercises. The artifacts
in these datasets were mostly caused by the muscles we
monitored with the EMG. This indicates that including the
EMG data of the muscles that most interfere with the EEG
signal in the ICA decomposition raises the accuracy of the
ICA model and makes the ICs more distinguishable.

We fixed the number of ICs that were rejected to achieve
an unbiased comparison. Rejecting a different number of
components, or not limiting the number at all, could produce
different results. The error of the classifier used for selecting
the ICs to reject also propagates to the results of this study.

The EMGs were placed to record the activity of the ster-
nocleidomastoid and the trapezius muscle because of their
close proximity to the EEG electrodes and negligible signal
strength of muscles farther away [22]. However, propagation
of electrical signals through the body is a highly complex
problem, e.g. because of the different electric resistivity of
different tissue types [23]. In future studies the influence of
including the EMG of different muscles should be evaluated.

Our study showed that the ICA-based reduction of elec-
tromyogenic artifacts can be improved by including the EMG
data of artifact-inducing muscles. This approach could prove
beneficial for locomotor disorder research, brain-computer
interfaces, neurofeedback, and most other areas where brain
activity during movement has to be analyzed.
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