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Abstract— Relaxometry mapping is a quantitative modal-
ity in magnetic resonance imaging (MRI) widely used in
neuroscirence studies. Despite its relevance and utility, voxel
measurement of relaxation time in relaxometry MRI is compro-
mised by noise that is inherent to MRI modality and acquisition
hardware. In order to enhance signal to noise ratio (SNR)
and quality of relaxometry mapping we propose application of
anisotropic anomalous diffusion (AAD) filter that is consistent
with inhomogeneous complex media. Here we evaluated AAD
filter in comparison to two usual spatial filters: Gaussian and
non local means (NLM) filters applied to real and simulated
T2 relaxometry image sequences. The results demonstrate that
AAD filter is comparatively more efficient in noise reducing
and maintaining the image structural edges. AAD shows to be
a robust and reliable spatial filter for brain image relaxometry.

I. INTRODUCTION

Magnetic resonance imaging provides several useful tools
for studying the human body and has been of great impor-
tance to medicine. Among the different imaging techniques,
the relaxometry technique has demonstrated to be a key
factor for the study of iron distribution in the brain in some
brain diseases such as Multiple Sclerosis [1], Parkinson’s
disease [2], and brain tumors [3]. However, limitations of
this image technique, such as noise and long acquisition time,
provide some barriers to increasing the precision.

Some approaches have been applied to the relaxometry
imaging protocol using several different image enhancement
techniques. Recently, some research has been conducted with
different approaches to improve relaxometry precision that
involves mathematical fitting [4] and spatial filtering such as
Non Local Means (NLM) and Gaussian classical filtering
[5]. These methods show particular solutions to enhance
relaxometry images, and in particular the use of the NLM
algorithm has been demonstrated to be more suitable than
the classical Gaussian filtering method [5].

The use of diffusion equations to filter digital images is
well know and applied in several studies with biomedical
images [6]. In summary, the diffusion equation, with a
classical approach, could be solved with isotropic assumption
(classical Gaussian filtering) and anisotropic assumption [6].
These two types of filters have been a wide application
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in several biomedical image techniques. However, in recent
studies it has been shown that AAD filtering (resulting by
porous media equation [7]) has a better filtering performance
than the classical diffusion approach when it is applied to
MRI brain imaging [8].

Others facts that support the use of anomalous diffusion
filtering could be provided by the natural complex structure
found in the human body. In the literature research is
found that supports the anomalous behavior in the MRI
signal decay [9] and other anomalous highlights involved to
brain images [10]. Furthermore, the AAD filter demonstrates
potential to enhance MRI diffusion weighted image quality
[8], and this applicability is hereby extended to relaxometry
images.

Here we will study three methods for filtering images of
MRI relaxometry aiming to reduce the noise and improve
the accuracy of the estimate of T2 relaxation times. It will
be used simulated and real images with controlled noise
intensity in order to estimate the optimal parameters for each
filtering approach.

II. MATERIALS AND METHODS

A. Anisotropic Anomalous Diffusion Filter

The AAD filter is know as a generalization of the classical
diffusion process, in this case the anisotropic diffusion filter
[6]. The numerical algorithm is shown in Equation (1) and
it is basically the classical approach with some differences.
The Equation (1) simulates the diffusion process in each site
in the image in discrete form, regulated by the anomalous
parameters such as the q value (a parametric curve adjust)
and the diffusion coefficient (Dq).

It+1,β = It,β +
[
D(−→r )q.

−→
∇I2−q

t,β−1 +D(−→r )q.
−→
∇I2−q

t,β+1

]
(1)

For simplicity, I2−q
t,β represents the image at time t ac-

cording to locating a 3× 3 neighborhood of the center pixel
for a defined anomalous parameter q. The D(−→r )q parameter
add to the edge detection [6] function is used to regulate
the iterative diffusion process and the discrete formulation is
similar to the classical anisotropic approach, i.e. D(−→r )q =

Dq.exp
[
|
−→
∇I(−→r ,t)|2

κ2

]
. The parameter β informs the spatial

position of the neighbor relative to the central pixel and with
this orientation the central pixel has a weighted value based
on the anomalous solution generated by Equation (1).

There are two main points to discuss about these dif-
ferences: the anomalous q-distribution and the diffusion
coefficient (Dq). What we call the q-distribution is in fact the
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probability distribution function that represents the solution
of the Equation (1). The q-distribution in this case could
be called the q-Gaussian probability distribution and it is
well know in physics simulation problems [7]. The diffusion
coefficient, Dq , is a parameter that regulate the diffusion
intensity in determined site in the image and it is represented
by Equation (2). It is close to the relationship between Dq

and the q parameter, and both create a specific q-Gaussian
distribution in each neighborhood on the image.

Dq =


α
2 .D.

(√
(q−1)
π .

Γ( 1
q−1 )

Γ( 1
q−1−

1
2 )

) 2−2q
3−q

, 1 < q < 2

α
2 .D , q = 1

α
2 .D.
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3−q
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Where α = (2− q)(3− q)]2/(3−q) and 0 < q < 2 are the
range for the q parameter for numerical stability in Equation
(1). In summary, the anomalous diffusion generates another
probability distribution function that it is suppose to be more
suitable for image with complex features.

As seen in Equation (1) we can define the two parameters
responsible for the filtering intensity: the diffusion coefficient
(Dq) and the number of iterations (t). However, we assume
the number of iterations as the intensity variable and we
fixed Dq because of the q value dependence, i.e. depending
on the q value the parameter Dq change its range as show in
Equation (2). The t parameter can be adjusted in comparison
with the variance (σ2) [7], with a relationship given by
σ =

√
2.Dq.t2/(3−q). This variance dependence with time

is well know as the generalized Einstein equation when
the anomalous distributions and it describes the smoothing
parameter behavior with the AAD filter.

B. Images

In order to study the behavior of the AAD filter we
proposed, in a first approach, a simulated image generated by
Matlab software with a 256×256 matrix size. A relaxometry
sequence was generated with this simulated image using a
mean value found in different brain tissues such as: White
matter (WM), gray matter (GM), cerebro-spinal fluid (CSF)
and in the globus pallidus region (GP). These values were
assumed as the real value that should be measured in the
relaxometry exam and represents the values in a healthy
brain. Eleven time echos (TE) were generated to create the
simulated relaxometry, and these values are usually used
in real protocol relaxometry exams (TE = 24, 36, 48, 60,
72, 84, 96, 108, 120, 132 and 144 ms). In each image in
the simulated relaxometry we added three different noise
intensities related with the signal to noise ratio (SNR). The
intensities were set with a SNR = 15, 30 and 60, respectively
[5]. The Gaussian white noise was the only noise distribution
used in this study.

C. Quality Metrics and Pixel-by-pixel relaxation estimation

Our approach to determine the T2 relaxometry from
the data acquired was followed with a mono exponential

adjustment as seen in Equation (3). This mono exponential
fitting approach is a common assumption in several studies
with relaxometry signals [11].

S(t) = S0.e
− t

T2 + C (3)

Where S(t) and S0 are the pixel intensity values acquired
at time t and t = 0, respectively. The T2 value is the
relaxation constant that are tissue characteristics and the
constant C is an offset parameter that is related with the
noise and the acquisition system of the experiment.

The filtering analysis was followed with the root mean
square error (RMSE) as seen in Equation (4). Each pixel
within all of the four specific regions of interest (ROI), in
the simulated and real image, was estimated by the curve
fitting previously described.

RMSE =

√
1

m× n
∑
i,j

|Io(i, j)− If (i, j)|2 (4)

Where m×n are the total number of pixels in the image,
Io(i, j) and If (i, j) are the original and filtered pixel values
at point (i, j), respectively. The RMSE is a cumulative
response that represents the filtered pixel value recovered
in comparison with the original image.

Two other filters were used in this study for comparison:
Non local mean filter (NLM) and the Gaussian filter. Both
approaches are well know in image processing and enhance-
ment research and they are already applied to relaxometry
problems [5].

III. RESULTS AND DISCUSSION

A. Filtering Parameter Set

Firstly, the number of iterations (t) was selected in order
to determine the best filtering result with the simulated image

Fig. 1. RMSE results with different smoothing parameter values, that it
is related with σ and the number of iteration, t. The smoothing parameter
has a relationship with the number of iterations of AAD filter and it is
related with the generalized Einstein equation as seen in the section II-A.
The dotted line represents the RMSE value found with the noisy image
before using the filters.
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Fig. 2. Exponential fitting in order to determine the relaxometry constant T2 for each brain region. A) Globus Pallidus, B) White Matter, C) Gray Metter
and D) cerebro-spinal fluid. The AAD filter showed a better image enhancement that resulted in more acuracy with the original image pixel values.

described in the section II-B. See Figure 1 that shows the
best σ for each noise intensity chosen. The σ values chosen
to filter each image with a determined noise add was: σ15 =
1.5, σ30 = 1.0 and σ60 = 1.0 respectively. For the AAD filter
we used the q value setup as q = 1.3 which it is a optimized
value for MRI images [8]. The filtering parameters values
for NLM (h = 1.5σ) and Gaussian (σ = 1.0) filter were
selected based on the literature [5].

Fig. 3. Filter applied on the simulated T2 relaxometry image. A) Original
noisy image with SNR = 15 noise intensity, B) Gaussian filter, C) NLM
filter and D) AAD filter. Note the edge preservation resulting when the AAD
filtering is applied.

B. Simulated Relaxometry

Images with additive noise were filtered with AAD, NLM
and Gaussian filters. Figure 3 illustrates some filtered image
examples. Almost all regions show a good noise attenuation.
The only region that shows a non-robust denoising effect
was the CSF region. The reason for not obtained a better
smoothing response with in CSF region is mainly due to the
small pixel quantity that is related with this tissue type in the
simulated image. Only the small circles were selected with
the CSF relaxometry values and it led to imprecision in the
relaxometry estimation for the CSF area.

The relaxometry estimations were calculated by the ex-
ponential fitting as Equation (3). The results of the T2
numerical estimation found in each brain region is show
in Table I and the fitting relaxometry curves are shown in
Figure 2. AAD shows to be more reliable when compared
to Gaussian and NLM filters by reducing noise without
displacing exponential curve from original one, as can be
observed in Figure 2.

TABLE I
T2 RELAXATION CONSTANT MEASURED IN EACH BRAIN TISSUE FOR

BOTH SIMULATED AND REAL IMAGES.

Tissue Original Gaussian NLM AAD
GPs 36.6 ±0.9 42.4 ±0.9 45.3 ±1.2 41.0 ±0.9
WMs 65.6 ±0.7 69.2 ±0.7 73.0 ±0.9 67.5 ±0.7
GMs 68.3 ±0.9 71.8 ±0.9 75.0 ±1.1 70.0 ±0.9
CSFs 65.4 ±15.9 63.9 ±5.6 65.8 ±21.1 69.9 ±17.8
GPr 51.5 ±0.5 49.7 ±1.4 48.0 ± 1.3 48.1 ±1.3
WMr 72.6 ±0.7 69.2 ±1.1 69.8 ±1.2 70.0 ±1.3
GMr 82.6 ±0.7 76.9 ±1.3 79.4 ±1.4 79.5 ±1.4
CSFr 130.3 ±8.5 80.1 ±4.3 115.3 ±9.5 115.1 ±9.1
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Fig. 4. Filter applied on the real T2 relaxometry image. All images were
amplified at the frontal lobe cortex in order to see the local smoothing. A)
Original image, B) Gaussian filter, C) NLM filter and D) AAD filter. The
edge preservation is well performed with the AAD filtering.

Table I shows both the simulated and real T2 relaxom-
etry estimation. We only illustrated the values found with
SNR=15, the other noise intensities have the same response
behavior.

C. Real Relaxometry

This study was performed with a real T2 relaxometry
image and the results found with the real data are show in
Table I. The results for all filters studied here can be seen
in Figure 4. We can note that in addition to noise reduction,
edges was also preserved when the AAD filter was applied.
On the other hand, for NLM filter, the T2 estimation did not
present the decrease in standard error as did the AAD filter.

IV. CONCLUSIONS
The non homogeneous media provide a spatial complex-

ity that the anomalous diffusion (AAD) filter show better
smoothing efficiency. In comparison with the non local
means (NLM) and Gaussian filters, the AAD approach
demonstrated local filtering preservation suitable for further
processing such as brain tissue segmentation. The NLM
filter has a good edge preservation performance, however
it does not preserve, as seen with the AAD filter, the natural
inhomogeneity observed in the human brain tissues as seen
in the white and gray matter.

The AAD filter provides a robust and stable solution when
compared with the other usual spatial filters. The use of
anomalous distribution demonstrate to be more suitable for
relaxometry estimation even with intense noise is applied.
The T2 estimation enhancement by the AAD filter applica-
tion could be applied to many applications of relaxometry in
biomedical imaging and this should improve several medical
diagnostic and neuroscience studies.

This study allows us to state toward the superiority of
AAD in improve relaxometric measurements in MRI relax-
ometry images. The results with real images are promising,
but a more extensive study will be necessary in order to fully
characterize the AAD performance in relaxometry mapping
enhancement. In a future study this approach to real MRI
imagens protocols will be applied in order to investigate the
AAD smoothing in a real situation.
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