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Abstract— To support 3D magnetic resonance image (MRI)
analysis, a marginal image similarity (MIS) matrix holding MR
inter-slice relationship along every axis view (Axial, Coronal,
and Sagittal) can be estimated. However, mutual inference from
MIS view information poses a difficult task since relationships
between axes are nonlinear. To overcome this issue, we in-
troduce a Tensor-Product Kernel-based Representation (TKR)
that allows encoding brain structure patterns due to patient
differences, gathering all MIS matrices into a single joint image
similarity framework. The TKR training strategy is carried out
into a low dimensional projected space to get less influence of
voxel-derived noise. Obtained results for classifying the consid-
ered patient categories (gender and age) on real MRI database
shows that the proposed TKR training approach outperforms
the conventional voxel-wise sum of squared differences. The
proposed approach may be useful to support MRI clustering
and similarity inference tasks, which are required on template-
based image segmentation and atlas construction.

I. INTRODUCTION

Brain Magnetic Resonance (MR) imaging plays an impor-
tant role in many medical applications like: i) identification
of differences of functional brain structures along the time
or space that can help to model evolution of pathologies,
by instance, dementia, Alzheimer, and schizophrenia [1],
ii) to develop realistic conductivity head models enhancing
activity reconstruction accuracy [2], [3], iii) to extract spatial
characteristics (as size, shape, and place) allowing to build
representative anatomical models of populations [4].

All the applications enumerated above need accurate seg-
mentation of brain regions and structures, which is fairly not
easy to obtain due to image artifacts and low inter-structure
contrast [5], [6]. To cope with these issues, template-based
techniques have raised taking into account some prior spatial
distributions of brain structure shapes. Specifically, priors are
provided as a set of shape, intensity and/or functional models
of structures as introduced in [7]. Nevertheless, segmentation
quality is highly dependent on performed atlas-to-image
registration. Besides, each obtained template may produce
errors on accomplished segmentation results since ground-
truth templates are manually drawn (not mentioning that a
unimodal brain structure distribution shape is imposed) [8].
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Therefore, to overcome those drawbacks, multi-atlas segmen-
tation schemes have been proposed recently, where instead of
just one, a set of atlases is registered to each query image. As
a result, each voxel label is inferred over more information
extracted from the atlas set so that influence of wrongly
registered outliers or mislabeled templates is reduced. In
this regard, head models are computed in [2] specifically
for some subject-oriented demographic categories (as age,
ethnicity, gender, and skull size), improving source localiza-
tion by reducing the bias of anatomically unrepresentative
atlases. The approach in [7] uses the presented mean shift
algorithm perform atlas stratification to determine whether
considered population is multi-modal and is best represented
by an atlas per mode. Likewise, ranked atlas selection is
performed in [8] by computing image similarities among
subjects images based on measures like sums of squared
differences, cross-correlation, and mutual information. Yet,
convergence of both above introduced estimators can not be
guaranteed in case of high-dimensional spaces.

Here, a kernel-based representation is proposed to improve
MRI grouping analysis. To this end, inherent Inter-Slice
Kernel (ISK) relationship is estimated to identify smooth
MR slice variations that aim to highlight brain structure
distributions. Besides, ISK-based feature representation is
used to find each pairwise MR image marginal similarity
(MIS), which are coupled by a Tensor-Product Kernel strat-
egy to explore joint MRI similarity. The proposed approach is
concretely developed to enhance both MRI data interpretabil-
ity and separability using patient demographic information.
Particularly, age and gender patient categories are studied.
In this regard, our proposal is suitable to support MR image
clustering and similarity measurement tasks required on
template-based image segmentation and atlas construction.

II. TENSOR-PRODUCT KERNEL-BASED REPRESENTATION

Provided a MRI set X= {Ψn ∈Ω} to encode pair-wise
image affinity, we propose a kernel-based representation
as: f (Ψn, Ψm)= 〈ϕ (Ψn) , ϕ (Ψm)〉, with m,n = 1, . . . , N ;
where ϕ : X→H is a nonlinear function mapping from the
original feature space, Ω⊂R

La×Ls×Lc , to a Reproducing
Kernel Hilbert Space, H⊂R

q. Though in practice it holds
that |Ω| ≪ q and q → ∞, through the so called “kernel

trick”, there is no need for computing ϕ(·) [9].
We assume an original MR image space, Ω, holding a

slice set Ψ={Xv
i : i = 1, . . . , Lv} ordered according to the

considered axis view, namely: Axial, Sagittal, and Coronal,
respectively, noted as v ∈ {a, s, c}. Thus, Axial axis has
La slices, each one represented by a matrix X

a
i ∈R

Ls×Lc .
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Further, we impose smooth variations between adjacent slices
of Ψ to encode each pairwise Inter-Slice Kernel (ISK)
relationship along the v-th axis into the matrix S

v={svij ∈
R

+}, with S
v ∈R

Lv×Lv , where ISK matrix elements are
calculated by a positive definite kernel function, K1 (·, ·):

svij = K1

(

X
v
i ,X

v
j

)

. (1)

Since ISK matrix allows representing high-dimensional
image information along every axis, Marginal Image Simi-
larity (MIS) can performed for each axis v based on pairwise
comparison of image features (i, j) as follows:

kvnm = K2 (S
v
n,S

v
m) (2)

where K2 (·, ·) is a positive definite and infinitely divisible
kernel function producing the matrix K

v = {kvnm ∈ R
+}

with K
v∈RN×N .

Afterwards, to explore joint image similarity through all
axes, we put forward a joint affinity measure of MIS ma-
trices by introducing the following Tensor-Product Kernel
Representation (TKR):

cnm =
∏

∀v

(kvnm)
θv , (3)

where θv ∈R
+ is the kernel exponent, C = {cnm ∈R

+},
and C∈R

N×N . However, noisy MIS will lead to deleteri-
ous effects on the joint similarity in Eq. (3), due to cnm→0
when kvnm→0. To cope with those effects, influence of the
v-th MIS is decreased as θv→0, so, (kvnm)

θv →1. Besides,
positive definite and infinitely divisible properties of kernels
in Eq. (2) allow fixing arbitrary powers, θv, so that the
resulting TKR in Eq. (3) is always positive definite.

III. EXPERIMENTS AND RESULTS

A. Demographic MRI Database

The IXI dataset is a brain imaging study holding MR
images from 575 normal subjects aging between 20 and
80 years. Subjects were provided with T1, T2, PD, DTI,
and angiogram volumes. All image sequences were obtained
with three different scanners (Philips 1.5T, Philips 3T, and
GE 3T), to be further anonymised and converted to NIFTI
format. Additionally, basic demographic information for each
subject is included (age, gender, ethnicity, among others).
The whole dataset is publicly available online1. Since the
current paper goal concerns atlas construction, only the
T1 sequences were taken into account that were acquired
with the GE 3T scanner for N = 314 subjects. Those T1
sequences are composed of 256× 256× 150-sized volumes
with a voxel size of 0.9375 × 0.9375 × 1.2mm. Thus, the
considered subset is composed of 139 male and 175 female
subjects. Fig. 1 shows an example of the MR image for a
concrete subject along three different views.

1http://www.brain-development.org/

(a) Axial (b) Sagittal (c) Coronal

Fig. 1. Volume sample from the IXI database. Subject 002

B. Preprocessing over input MRI images

Two preprocessing steps are performed over the whole im-
age dataset. Initially, each image is registered to the MNI305
template by an affine transform so that the whole dataset is
referenced to the Talairach space [10]. Hence, each volume
is re-sampled to 197 × 233 × 189 size. Then, an intensity
normalization procedure is performed by scaling each voxel
value so that the mean intensity of the white matter is fixed
to be 110 [11]. Both preprocessing steps, normalization and
registering, are performed with the Freesurfer image analysis
suite that is freely available online2.

C. Learning Patient Patterns extracted from MRI Set

We explore two similarity-based image representation
techniques to find patient patterns from MRI. The first one
is a baseline where each image voxel is used as feature [8],
while the second one uses the proposed TKR to encode each
MRI pairwise relationship. Here, since all provided kernel
functions are Gaussian, we introduce the following notation:

g (d (z, z′) ;σ) , exp
(

− d (z, z′)
2
/(2σ2)

)

,

where σ ∈ R
+ is the kernel band-width; z, z′ ∈ Z is a sample

pair in a given feature space Z, and d (·, ·) is a distance
operator in Z.

As regards the voxel-wise approach, we calculate each
element ynm∈R+ of the MRI similarity matrix Y ∈RN×N

using the Euclidean metric between n-th and m-th images
as follows (Notation ‖ · ‖2 stands for the 2-norm):

ynm = g (|| vec(Ψn)− vec(Ψm)||2;σV ) , (4)

notation vec(·) stands for column-based concatenation of
a given matrix. In turn, for the latter TKR approach, we
calculate each ISK-based feature representation matrix S

v

from MRI as in Eq. (1) using the Frobenious norm:

svij = g
(

||Xv
i −X

v
j ||F ;σsv

)

. (5)

As a result, we get three ISK matrices (one for each view)
of size Lv ∈{197, 233, 189}. Afterward, we calculate each
MIS value encoding pairwise MRI relationship as in Eq. (5):

kvnm = g (||Sv
n − S

v
m||F ;σkv

) . (6)

It should be quoted that every kernel band-width in
Eqs. (4)-(6) must be properly tuned. In the concrete case,
we take into account that the variance of any Gaussian

2http://surfer.nmr.mgh.harvard.edu/
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kernel g(·;σ) tends to zero whenever σ tends to either
zero or infinity. Therefore, to get an appropriate σ value
spanning widely all similarity values, we propose to adjust
the Gaussian kernel band-width employing the following
criterion (Notation var(·) stands for the variance operator):

σ∗ = argmax
σ

{var(g(·;σ)} ,

In consequence, we obtain the following values in our
experiments: σV =1280, σs1 =133, σs2 =129, σs3 =130,
σk1

=9.25, σk2
=7.02, and σk3

= 7.56. Figure 2 shows an
example of the proposed ISK representation. The red patches
on the ISK representations are encoding all the MRI edges
with no content, i.e., the background. As the Sagittal ISK (see
Figure 2(c)) exhibits symmetry respect to the anti-diagonal,
it is clear that the representation can read the head sagittal
symmetry. Since the kernel shape varies as the brain structure
distribution varies, it is inferred that proposed ISK encodes
suitably the head shape. Although the latent phenomenon is
the same for all ISK, each of them are providing a different
view of the structure. Hence, aiming to include all the ISK
information into a single kernel, proposed TKR is performed
to estimate the MRI similarity matrix C coding axes view
relations as presented in Eq. (3), where θv parameters are
fixed by analyzing each kernel matrix K

v to accentuate
MIS high variability that should be useful to identify MRI
discriminative patterns as follows:

θv =
var (vec (Kv))

∑

v var (vec (K
v))

.

(a) Axial (b) Coronal (c) Sagittal

Fig. 2. ISK for a given image. All axes are measured in mm.

In our experiments, θ1 = 0.32, θ2 = 0.35, and θ3 = 0.33.
Figure 3 presents the attained values of MRI similarity using
TKR sorting them by gender and age IXI categories. As seen,
the gender and age slots are highlighted from TKR supplying
evidence about some possible MRI patterns.

Fig. 3. MRI database TKR.

Furthermore, a low-dimensional space is computed from
each matrix Y and C based on Kernel Principal Component
Analysis (KPCA) to visually identify MRI clusters. Here,
two IXI database categories are considered: gender and age.

Therefore, the first three components for voxel-wise and
TKR based representations are shown in Fig. 4. Regarding
the age as a demographic category, by visual inspection of
the first and second low-dimensional coordinates depicted in
Fig. 4(b), it can be seen that the proposed methodology can
unfold the age better than the baseline decomposition results
(see Fig. 4(a)). Moreover, a quadratic dependence between
second and first eigenvectors can be inferred. Additionally,
a larger dispersion is shown on older subjects than on
younger ones. This finding can be due to a larger head
shape dispersion on older persons, which is according to
anatomical head knowledge. It is known that brain anatomy
is steady on middle age humans, while change (gray matter
volume diminishes) faster on older humans [8]. With respect
to gender category, the first and third low-dimensional coor-
dinates seem to be suitable to distinguish IXI gender labels
as seen in Figs. 4(a) and 4(b). Particularly, attained TKR-
based projection allows to separate better between male and
female labeled MRI than Voxel-wise one.

To verify the above mentioned statements, a k-nearest
neighbor classifier is trained using each kernel-based induced
distance from Y and C . Table I presents the attained confu-
sion matrices for a leave-one-out validation scheme, where
four classes are considered: adult male, senior male, adult

female, and senior female. Moreover, adult label corresponds
to age values between 20 and 50 years, and senior label to
age values higher than 50 years. Thus, our proposal attains
higher classification accuracy than the baseline method. In-
deed, presented ISK feature representation with TKR allows
to identify similar brain structures by analyzing the joint axis
view relationships. Regarding the Voxel-wise approach, it
can obtain an acceptable gender discrimination, however, it
is not able to distinguish age categories. So, complex brain
structures, e.g., those related with patient age variations, can
not be properly encode by the high-dimensional MR voxel
representation.

IV. CONCLUSIONS

In this paper, a kernel-based image representation is intro-
duced that is specifically devoted to support 3D MR image
analysis. The proposed approach encodes smooth MRI inter-
slice variations by a kernel-based function, which can be
related to the brain structure distribution. Besides, ISK along
each axis view, namely: Axial, Coronal, and Sagittal, are
employed to estimate MRI marginal similarities as a tool
to highlight head patterns. Furthermore, a Tensor-Product
Kernel strategy is carried out over MIS to explore the joint
MRI similarities for enhancing both data interpretability and
separability using patient demographic information. Taking
into account the attained results over a well-know MRI
dataset, the proposed kernel-based representation method-
ology proved to find the natural inherent distributions of
MR images, namely, age and gender categories. In addition,
the proposed methodology improves data separability in
comparison to state of the art algorithms based on Voxel-
wise MR image representation. So, our proposal is suitable
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(a) Voxel-wise projection
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(b) TKR-based projection

Fig. 4. MRI database projections

to support MR image clustering and similarity measurement
tasks required on template-based image segmentation.

As future work, three main research lines are proposed:
i) Given that obtained decomposition vectors do not follow
Gaussian distributions, other relaxed embedding methods,
such as local linear embedding and Laplacian eigenmaps,
will be tested aiming to improve the representation quality.
ii) Supervised decomposition techniques will be proved to
find representations suitable to distinguish other categories
such as ethnicity or pathology subclasses. iii) The most
straightforward research direction is to test our proposal as
a template subset selector on MR image segmentation tasks
so that the structure classification results are improved.
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