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Abstract— Although ultrasonography has been widely used
in clinical applications, the doctor suffers great difficulties in
diagnosis due to the artifacts of ultrasound images, especially
the speckle noise. This paper proposes a novel framework for
speckle reduction by using a phase-based weighted least squares
optimization. The proposed approach can effectively smooth out
speckle noise while preserving the features in the image, e.g.,
edges with different contrasts. To this end, we first employ
a local phase-based measure, which is theoretically intensity-
invariant, to extract the edge map from the input image. The
edge map is then incorporated into the weighted least squares
framework to supervise the optimization during despeckling, so
that low contrast edges can be retained while the noise has been
greatly removed. Experimental results in synthetic and clinical
ultrasound images demonstrate that our approach performs
better than state-of-the-art methods.

I. INTRODUCTION

Among many imaging modalities that have been developed
for clinical diagnosis and therapy, ultrasonography is the
most favorable because it is noninvasive, real-time and easy
to operate. Unfortunately, ultrasound images are inevitably
corrupted by speckle noise, which increases the difficulties of
processing and analysis on these images. It is thus essential
and meaningful to remove the speckle from ultrasound
images so as to simplify their usages in clinical applications.

A lot of approaches have been proposed for speckle
reduction. Both Lee filter [1] and Frost filter [2] update
the intensity for each pixel by weighting the pixels inside
the filter window based on local coefficient variance. Later,
Lopes et al. [3] enhanced these filters by first classifying
all the pixels into three clusters and then applying specific
processing on each cluster. Moveover, the squeeze box filter
[4] removes local extrema that are assumed to be outliers by
replacing them with local means.

Some edge-preserving smoothing operators designed for
natural images have been extended for speckled images.
Yu and Acton [5] proposed an edge-sensitive approach to
reduce speckle based on anisotropic diffusion [6] that en-
courages intraregion smoothing in preference to interregion
smoothing. Krissian et al. [7] further proposed an oriented
speckle reducing anisotropic diffusion by considering local
directional variance of the image intensity. These approaches
can gradually smooth the speckled image. However, a lot
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of meaningful details are discarded and the despeckled
result usually converges to a constant-value image. Bilateral
filter [8][9] is originally proposed to remove additive noise
by weighting the spatial and the range distances between
two neighboring pixels. Based on this, Balocco et al. [10]
presented a speckle reducing bilateral filer by embedding the
noise statistics in the weighting scheme. Non-local means
(NLM) filter [11] has also been utilized to remove speckle
noise, and Couple et al. [12] employed the Bayesian frame-
work to derive a NLM filter that adapts to ultrasound data
by defining a Pearson distance for the speckle model.

Wavelet-based methods are also exploited for speckle
reduction. Yue et al. [13] described a nonlinear multiscale
wavelet diffusion approach for noise suppression. It makes
use of the sparsity and multiresolution properties of the
wavelets and the edge enhancement feature of nonlinear
diffusion. Recently, Esakkirajan et al. [14] presented an adap-
tive wavelet packet-based smoothing approach by combining
the bilateral filter. However, these methods tend to produce
ringing artifacts due to the multiresolution and directionality
characteristics of wavelet transformation.

The goals of speckle reduction are two manifolds. On
one hand, we want to smooth the speckled image as much
as possible except across significant features, e.g., object
boundaries. On the other hand, the despeckled image shall
be as close as possible to the original one so that important
structures are not damaged. In this paper, we propose a
novel approach to achieve these goals based on the weighted
least squares (WLS) framework [15]. WLS has been shown
to have the nice property of smoothing image details at
different scales without blurring the features. However, we
demonstrate that the original gradient-based WLS is not suit-
able for ultrasound images while its phase-based counterpart
turns out to be a better alternative as phase-based methods
are robust to noise and attenuation artifacts. Based on this
observation, we employ a local phase-based measure to
extract the edge map from the speckled image. The edge map
is then incorporated into the WLS framework as a weighting
function to supervise the optimization during despeckling.
Attributing to the intensity-invariant property of the phase-
based measure, we can effectively remove speckle noise
while preserving the edges in the image.

II. METHOD

A. Multiscale Feature Asymmetry

Local energy model developed in [16] postulates that fea-
tures are perceived at points where the Fourier components
are maximally in phase. In [17], Felsberg et al. proposed a 2D
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isotropic analytic signal, called monogenic signal, to perform
local analysis. The monogenic signal is defined by combining
the original 2D signal f with its Riesz transform fR to form
a 3D vector fM = (f, fR) = (f, r1 ∗f, r2 ∗f), where r1 and
r2 are the Riesz filters. In practice, local analysis is usually
performed via a bank of bandpass quadrature filters tuned
to various spatial frequencies because real images generally
consist of a wide range of frequencies. Therefore, a set of
bandpass filters g are combined with the monogenic signal,
which now becomes: fM = (g ∗ f, g ∗ r1 ∗ f, g ∗ r2 ∗ f) =
(even, odd), where even and odd represent the scalar-valued
even and the vector-valued odd responses of the quadrature
filters, respectively. As suggested in [18], we choose Cauchy
kernels as bandpass filters due to their nice property of
localization. In frequency domain, a 2D isotropic Cauchy
kernel is defined as

G(ω) = nc|ω|a exp(−s|ω|), (1)

where a ≥ 1, ω = (u, v), s is the scale parameter and nc is a
normalization constant. Please refer to [18] for more details
about the parameters.

In [19], Kovesi pointed out that, at points of asymmetry,
the absolute values of odd symmetric filter responses are
large while the absolute values of even symmetric filter
responses are small, and suggested to use the differences
between the odd and the even symmetric filter responses over
a number of scales to detect step edge-like features. In light
of this, we define a multiscale feature asymmetry measure
to extract the edges from ultrasound images as

MSFA =

∑
n⌊|oddn| − |evenn| − Tn⌋∑

n

√
odd2n + even2

n + ε
, (2)

where ε is a small constant to avoid division by zero; Tn is
the scale specific noise threshold and ⌊·⌋ denotes the zeroing
of negative values. The MSFA measure takes values between
0 and 1, close to 0 in smooth regions and close to 1 near the
boundaries.

Phase-based measures have been successfully used for
edge detection in ultrasound images [20][21] because of
their invariance to variations in image contrast. Our MSFA
measure shares the same property, as shown in Fig. 1.
Note that the boundary contrast of the inner object is much
lower than the one of the outer object. Nevertheless, the
MSFA edge map precisely captures the boundaries of the
two circular objects. In contrast, the responses in the gradient
edge map are rather weak since it is directly related to the
intensity of the image. The situation is even worse in low
contrast regions and the boundaries of the inner object is
almost invisible in the gradient edge map.

B. Phase-based Weighted Least Squares

As stated previously, to remove speckle noise from an
ultrasound image S, we seek to find a new image I , which
is as close as possible to S but is also as smooth as possible
everywhere, except across significant features. The weighted

Fig. 1. Edge detection in a synthetic ultrasound image. (Left) Input image.
(Middle) Gradient edge map. (Right) MSFA edge map.

least squares framework formulates the balance of those two
goals by minimizing the following energy function∑

p

(
(Sp − Ip)

2 + λ
(
wx,p(S)

(∂I
∂x

)2

p
+ wy,p(S)

(∂I
∂y

)2

p

))
(3)

where p is the pixel location and λ balances the impact
between the two parts of the energy function. The first part
corresponds to the data term that is used to minimize the
difference between S and I . The second part contains two
partial derivatives, which are used to smooth the resultant
image. wx,p(S) and wy,p(S) are two weighting functions
and are typically set to be identical [15].

Unfortunately, traditional WLS does not work well when
directly applied to ultrasound images because of the char-
acteristic artifacts. One major reason is that the weighting
functions are usually defined based on image gradient, which
is rather weak for ultrasound data. We solve this problem
by combining the above MSFA measure and the WLS opti-
mization into a unified framework. Specifically, we develop
a phase-base WLS framework by setting the two weighting
functions with the MSFA measure as

wx,p(S) = wy,p(S) = ((MSFAp(S))
α + ε)−1 (4)

where α controls the sensitivity of the MSFA edge map. Eq.
4 plays an important role in adapting WLS to ultrasound
images. Different from gradient-based operators, the MSFA
measure is robust to noise and attenuation artifacts, and it
only responds high to the edges in the images. Therefore, the
values of the weighting function are quite low at the edges,
which prohibited image smoothing. In contrast, smoothing
is greatly encouraged in homogeneous regions, resulting in
edge-preserving speckle reduction.

In order to minimize Eq. 3, we rewrite it into the following
matrix form

(S− I)T (S− I)+λ(STCT
x WxCxS+STCT

y WyCyS) (5)

where matrices Cx and Cy are discrete differentiation opera-
tors. Wx and Wy are diagonal matrices, and their values are
set as Wx[i, i] = wx,p(S) and Wy[i, i] = wy,p(S). Finally,
minimization of Eq. 3 boils down to solving the following
linear system

(A+ λL)S = I (6)

where A is the identity matrix and L = CT
x WxCx +

CT
y WyCy .

3910



Fig. 2. Comparison of speckle reduction with a synthetic ultrasound image (left of Fig. 1). From left to right: Lee’s result [1], Yu’s result [5], Coupé’s
result [12], Farbman’s result [15], our result and the ground truth.

III. EXPERIMENTS

In this section, we validate the performance of the pro-
posed approach with both synthetic and clinical ultrasound
images. To demonstrate the advantages of our approach,
several state-of-the-art methods are also executed for compar-
ison. For all the methods, we use the parameters that produce
the best results. We also adopt two widely used measures
to quantitatively evaluate the performance of these methods:
Pratt’s figure of merit (FOM) and mean structural similarity
(MSSIM). FOM is mainly used to assess the accuracy of
edge preservation and is defined as

FOM =
1

max{N̂ ,Nideal}

N̂∑
i=1

1

1 + d2iβ
(7)

where N̂ and Nideal are the number of detected and ideal
edge pixels, respectively. di is the Euclidean distance be-
tween the ith edge pixel and the nearest ideal edge pixel,
and β is a constant that is usually set to be 1/9. The values
of FOM vary from 0 to 1, and larger values indicate a better
performance on edge preservation. MSSIM is generally used
to assess the similarity between two images S1 and S2, and
is computed as

MSSIM(S1, S2) =
1

N

N∑
i=1

SSIM((S1)i, (S2)i) (8)

where N is the number of pixels in S1 or S2, and SSIM [22]
is defined as

SSIM(S1, S2) = [l(S1, S2)]
γ1×[C(S1, S2)]

γ2×[S(S1, S2)]
γ3

(9)
where l(S1, S2), C(S1, S2) and S(S1, S2) are three func-
tions to compute the differences of luminance, contrast and
structure between S1 and S2, respectively. The parameters α,
β and γ are used to adjust the importance of each function.
The values of MSSIM are also between 0 and 1, and higher
values means less difference between the two images.

A. Synthetic Images

The phantom data is synthesized using the simulation
program Field II [23], see left of Fig. 1. There are two
circular objects in the foreground. The contrast between the
background and the outer object is relatively high while
the contrast between the outer and the inner objects is
relatively low. Fig. 2 shows the despeckled images of five
methods. As can be seen, the first four methods tend to

TABLE I
COMPARISON OF FOM AND MSSIM MEASUREMENTS OF THE FIVE

METHODS IN THE SYNTHETIC ULTRASOUND IMAGE (LEFT OF FIG. 1).

Lee’s Yu’s Coupé’s Farbman’s Our
method method method method method

FOM 0.2888 0.4578 0.5855 0.3023 0.8286

MSSIM 0.7435 0.7698 0.7909 0.7483 0.8954

smooth the object boundaries in order to remove the speckle
noise. The situation is even severer in low contrast regions
where the boundaries of the inner object is heavily blurred.
In contrast, our approach perfectly smooths homogeneous
regions and preserves the boundaries of the two objects.
Tab. I lists the FOM and MSSIM measurements of the five
methods. Our approach achieves the highest value in the
two measurements, which means that our result is the most
similar to the ground truth.

B. Clinical Images

Fig. 3 shows the results of speckle reduction in a left
ventricle and a breast tumor ultrasound images. Again, our
approach greatly remove the speckle noise while the edges of
important structures are still preserved. Four other methods
are also presented for comparison. For these methods, the
price paid for smoothing the speckled images if the blurring
of the edges. One interesting thing is about the original WLS
model [15]. As shown in the figures, near blurred edges,
this model cannot correctly classify pixels into homogeneous
regions, leading to even more blurred of the edges. Our
approach precisely captures the object boundaries, and then
encourages intraregion smoothing while prevent interregion
smoothing so as to preserve the edges. This is attributed
to the intensity-invariant property of the local phase-based
measure, where both high and low contrast edges can be
accurately located. All the experiments demonstrate the fea-
sibility and superiority of the phase-based WLS.

IV. CONCLUSION

In this paper, we propose a novel phase-based framework
to reduce speckle noise in ultrasound images. Different from
previous methods, our approach can greatly remove the
speckle but effectively preserve low contrast features in the
image. This is achieved by combining the MSFA measure
and the WLS optimization into a unified framework. The
MSFA measure is independent to image intensity and can
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Fig. 3. Comparison of speckle reduction with a left ventricle (Top) and a breast tumor (Bottom) ultrasound images. From left to right: input images,
Lee’s results [1], Yu’s results [5], Coupé’s results [12], Farbman’s results [15] and our results.

accurately extract the edge map from low contrast ultrasound
images. The MSFA edge map enables WLS with the ability
of edge-sensitive during despeckling. Experimental results
demonstrate the advantages of the proposed approach in
comparison with state-of-the-art methods.

There are also some limitations about our approach. Like
other feature detection methods, the MSFA measure cannot
fully capture the features in the image due to the limited
number of scales used in the detection computation. The
features that are missed in the feature map will not be
preserved after smoothing. In addition, some noise may be
identified as image features by the MSFA measure and larger
λ is required in order to smooth out these false features,
which will result in certain degree of blurring of the image.
In future work, we will try to solve these problems by
optimizing the performance of the phase-based measure.
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