
  

 

Abstract—Current brain-machine interfaces (BMIs) allow 

upper limb amputees to position robotic arms with a high 

degree of accuracy, but lack the ability to control hand pre-

shaping for grasping different objects. We have previously 

shown that low frequency (0.1 – 1 Hz) time domain cortical 

activity recorded at the scalp via electroencephalography 

(EEG) encodes information about grasp pre-shaping. To 

transfer this technology to clinical populations such as 

amputees, the challenge lies in constructing BMI models in the 

absence of overt training hand movements. Here we show that 

it is possible to train BMI models using observed grasping 

movements performed by a robotic hand attached to amputees’ 

residual limb. Three transradial amputees controlled the 

grasping motion of an attached robotic hand via their EEG, 

following the action-observation training phase. Over multiple 

sessions, subjects successfully grasped the presented object (a 

bottle or a credit card) in 53±16 % of trials, demonstrating the 

validity of the BMI models. Importantly, the validation of the 

BMI model was through closed-loop performance, which 

demonstrates generalization of the model to unseen data. These 

results suggest ‘mirror neuron system’ properties captured by 

delta band EEG that allows neural representation for action 

observation to be used for action control in an EEG-based BMI 

system.        

I. INTRODUCTION 

Recent strides in robotic prosthetics for the upper limb 
potentially allow amputees to control an ever-increasing 
array of dexterous tasks [1], [2]. In addition to positioning the 
arm in space, an important challenge is to be able to control 
the pre-shaping of fingers during grasping. Recent advances 
such as targeted muscle reinnervation (TMR) [3] and 
myoelectric control using residual limb muscle activity [1] 
offer exciting possibilities, but lack the intuitive and natural 
control offered by brain-machine interfaces (BMIs) [4]. 
Intracranial BMIs have been demonstrated to control arm 
positioning with a high degree of accuracy, but have a single 
degree of freedom to control grasping [5]–[7]. Implementing 
an intuitive and noninvasive BMI for grasping has remained 
a challenge, however. 

In our previous work we show that grasping movements 
can be decoded from electroencephalographic (EEG) activity, 
a noninvasive modality to record cortical potentials at the 
scalp [8], [9]. Frequency-domain features such as the mu 
band (8-13 Hz) or gamma band (30 – 50 Hz) are modulated 
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by movement, and have been traditionally used in 
noninvasive BMIs.  We demonstrated that low delta band 
(0.1 -1 Hz) also contains significant information about 
grasping, albeit in the time domain. Further, we showed that 
principal components (PCs) of finger kinematics are decoded 
with the same level of accuracy as finger joint angles during 
grasp pre-shaping. In a closed-loop BMI scenario, it is 
advantageous to control the kinematic PCs as they allow 
grasp pre-shaping with fewer degrees of freedom. 

However, a key challenge in translating this technology to 
the clinical domain has been to construct such BMI models in 
the absence of overt hand movements in amputee subjects. 
Studies have shown that there may be a shared neural 
substrate between action observation and action performance, 
known as the mirror neuron system [11]. There is evidence 
from previous studies that in healthy human subjects and 
primates, such a shared neurophysiology allows us to 
substitute overt movement with action observation during 
training of a BMI model [12]–[14]. Here, we show results of 
using such an observation-based BMI training method for 
grasping in amputees.  

II. METHODS 

A. Experimental Design and Data Acquisition 

 

Three right-hand transradial amputees (2 males, 1 female; 
ages 56-76) participated in this study approved by the IRB at 
the University of Houston. Subjects A, B and C performed 
two, twelve and four sessions respectively, with each session 
being performed on a different day. Each session consisted of 
a training phase (creation of BMI model) and a testing phase 
(closed loop control using the BMI model). Subject B 
performed six additional sessions with only the testing phase, 
which will not be considered for this study. Subjects were 
fitted with an anthropomorphic robotic hand (IH2 Azurra, 
Prensilia s.r.l., Italy) to their residual limb sockets (Fig. 1).  
Sixty-four channel EEG (Brain Vision LLC, USA) was 
recorded at 100 Hz during the experiment (Fig. 1). 
Simultaneous recording of EEG and control of the robotic 
hand was achieved using the BCI2000 framework [15].  

The IH2 Azurra robotic hand has five degrees of freedom: 
one each for the flexion-extension of the thumb, index finger 
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Fig. 1. Experimental setup. 

Amputee subjects were fitted with 

the robotic hand to their residual 

limb sockets. 64 channel EEG was 

recorded simultaneously. 
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and middle finger, one for the combined flexion-extension of 
the ring and little finger, and one for the thumb rotation [2]. 
The robotic hand uses a differential mechanism via which a 
single degree of freedom (dof) is used to control both the 
MCP (metacarpal-phalangeal) and PIP (proximal inter-
phalangeal) finger joints in such a way that when the MCP 
joint encounters an obstruction (due to grasping an object), 
the PIP continues to flex until the object is grasped  [1] 
Finger kinematics for a single degree of freedom were 
specified at an 8-bit resolution, with 0 and 255 corresponding 
to open and fully flexed positions respectively. Nominally, 
two synergies of grasping based on principal component 
analysis of the joint angles were identified based on previous 
work as a) the correlated movement of the flexion-extension 
across all fingers and the thumb, and b) the thumb rotation 
[8]. These two synergies will henceforth be referred to as 
PC1 and PC2 

Subjects were seated in front of a table with their attached 
robotic hand resting on a switch. The experiment involved 
grasping two objects with the robotic hand: a bottle and credit 
card, meant to evoke a cylindrical and a lateral grasp 
respectively. Each trial consisted of a researcher presenting 
an object to be grasped at a pre-determined comfortable 
distance away from the resting position. Following 
presentation of the object to be grasped in a trial, subjects 
self-initiated hand transport towards the object (Fig. 2).   

 

During the training phase, initiation of hand transport 
triggered a pre-determined grasping sequence in the robotic 
hand, suitable to the object being presented. The pre-
determined finger joint trajectories were created so as to have 

typical human grasp aperture time profiles seen during 
grasping [16]. A Gaussian profile was used for PC1 
activation, while a Gaussian profile was used for PC2 
velocity, with a total time lengths 2 s and 1.5 s respectively 
(Fig. 3). The thumb rotation (PC2) was held constant during 
the second half of the trajectory in the case of the lateral 
grasp. Subjects timed their hand transport in conjunction with 
the hand pre-shaping, so that by the end of the hand transport, 
the object was grasped. Subjects were instructed to imagine 
themselves controlling the hand pre-shaping and grasping. In 
addition to the visual feedback, subjects were asked to 
imagine kinesthetic feedback as well. The grasp was held 
steady for 2 s, followed by an opening of the grasp and a 
return to the resting position (reverse of the grasping 
trajectory). During the grasp release trajectory, subjects 
transported the hand back to its resting position. Subjects 
performed 100 trials during the training phase. The order in 
which objects (bottle or card) were presented varied in a 
pseudorandom fashion.   

A mapping between the 64-channel EEG data and the two 
synergies (PC1 and PC2) was created using data recorded in 
the training phase. In the testing phase, this mapping was 
applied to EEG to make real-time predictions of PC1 and 
PC2, allowing closed-loop control of the robotic hand pre-
shaping. Initiation of hand transport by the subject, following 
presentation of an object to be grasped, triggered the start of 
closed-loop control. Thereafter, subjects had 5 s to grasp the 
presented object. The outcome of each trial was marked as a 
‘success’ or ‘failure’ depending on whether the subject was 
able to grasp the object or not. Monitoring current drawn by 
the actuator motor for each degree of freedom allowed us to 
detect when an object was grasped, since the current drawn 
spikes if resistance due to the object is encountered. Once an 
object was successfully grasped, closed loop control ceased 
and the grasp was held steady for 3 s. Following either 
outcome, the hand shape was returned to resting position 
according to the pre-determined grasp release trajectory 
suitable for the presented object, as used in the training 
phase.  

Real-time data acquisition and control of the robotic hand 
were achieved using the BCI2000 framework [15]. Although 
EEG was recorded at 100 Hz, data packets were sent from the 
amplifiers at a rate 50 Hz, constraining the real-time loop to 

Cylindrical Lateral 

Time (s) 

Fig. 3. PC1 and PC2 trajectories set during training phase for 

action observation. 

Fig. 2. Grasp trajectories in the observation-based training phase. Top row (time proceeds from left-to-right) shows snapshots in time of the 

grasp trajectory during a cylindrical grasp. Bottom row shows the grasp trajectory for a lateral grasp. 
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20 ms. Consequently, the robotic hand control was also 
sampled at 50 Hz.      

B. Signal Processing 

A causal filter was used to band-pass filter data between 
0.1 -1 Hz. This was implemented as cascaded high pass and 
low pass 2

nd
 order Butterworth filters. The maximum group 

phase delay in the passband was 300 ms. Both training phase 
and testing phase EEG were filtered in this manner. After the 
training phase, EEG and kinematics were extracted and 
processed offline in MATLAB (The Mathworks, Inc., USA). 
A lag of 100 ms was introduced in the EEG so that 
kinematics at time t aligned with EEG at time t-100 ms. This 
was done to account for the cortico-spinal delay and the lag 
estimate was based on previous BMI studies [17]. EEG data 
were standardized by their mean and standard deviation. 
Kinematics were upsampled to 100 Hz (from 50 Hz) using 
the MATLAB pchip (piecewise cubic hermite interpolating 
polynomial) method, followed by a transformation to PC1 
and PC2 by multiplying with the PC coefficient matrix for 
the pre-determined grasp trajectories. PC1 was the average of 
the 4 finger and thumb flexion values, and PC2 was the 
thumb rotation value. Data were then segmented into 
movement periods, from movement onset to completion of 
grasp, and concatenated along trials.  

These data were then used to construct a linear mapping 
using robust linear regression, which mitigates the effect of 
outliers by weighting them less. This method was 
implemented in MATLAB (The Mathworks, Inc., USA) 
using the robustfit function which uses iteratively reweighted 
least squares with a bisquare weighting function. PC1 and 
PC2 were modeled independently as a linear combination of 
EEG sensor data:  

   [ ]       ∑     [        ]

 

 

where    [ ] is the i
th
 PC being decoded at time  ,     are the 

model parameters and    are the processed EEG from the j
th
 

electrode. In the testing phase, this linear mapping was used 
to predict PC1 and PC2 values from filtered and standardized 
EEG. Standard deviation from the training phase was used to 
scale EEG. These PC predictions were then scaled using a 

gain parameter so that when transformed back to the 
kinematic space of joint actuators, they represent ‘properly’ 
scaled movements. A few trials were conducted before the 
testing phase to manually tune the gain parameters according 
to the subjects’ preference of the range of motion. If the final 
predicted kinematic actuator values were outside the range 0-
255, they were set to either 0 or 255 depending on the 
direction in which the range was exceeded.    

III. RESULTS 

 
  Subjects performed closed-loop control of the robotic 

hand in the testing phase using the linear model constructed 

after the training phase.  The outcome of each trial in the 

testing phase was either a successful grasp within the 5 s 

provided, or a failure to grasp. Examples of successful trials 

are shown in Fig. 4. The percentage of successful grasps in 

the testing phase was used as the performance metric. The 

average success rates across sessions were 58%, 64% and 

32% for subjects A, B and C who performed two, six and 

four sessions respectively (Fig. 5). We also investigated 

success rates for individual grasp types, and found that for 

Session 

A 
B 

C 

Fig. 4. Performance was measured as the percentage of trials in 

which grasps were performed successfully. Letters above traces 

indicate subject identifier. Black traces show the success rate 

across both the grasp types, blue and green traces show the same 

for cylindrical and lateral grasps.  Mean performance was 58%, 

64% and 32% for subjects A, B and C respectively. 

Fig. 5. Grasp pre-shaping with closed-loop control. Top row shows a trial with successful cylindrical grasp. Bottom row shows a lateral 

grasp under closed-loop control.  
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subjects B and C, the bottle was grasped better than the card. 

This may be because of the precision required for the card 

grasp, whereas the cylindrical grasp is a whole-hand grasp.   

 The training phase to calibrate the BMI model was 

performed in each session to assess the consistency of model 

performance across multiple days. Fig. 4 shows that within a 

subject, the performance is consistent across sessions. 

Further, BMI models were validated with the closed-loop 

scenario, confirming their generalizability to unseen data.  

IV. DISCUSSION 

In the absence of overt kinematics in amputees, being able 

to train BMI models presents a challenge for researchers. 

The mirror neuron system has been used to train BMI 

models in primates for 3D reaching movements  [18], [19]. 

A similar approach has been used to calibrate intracortical 

BMI to control positioning of an arm in space in humans [5]. 

Bradberry et al. have shown that it is possible to use action 

observation to determine a mapping between noninvasive 

EEG activity and cursor movement on a computer screen  

[14]. The results here show that this approach is successful, 

in amputees, to train BMIs for EEG to movement mappings 

for dexterous grasping tasks using a robotic hand as well.  

To conclude, we show in this study that observing 

grasping actions performed by a robotic hand can be used to 

train time-domain EEG-based neural interfaces. 

Furthermore, these BMI models are generalizable to closed 

loop grasping with consistent performance across sessions. 

Importantly, these results represent the closed-loop task 

performance immediately after training, and provide the 

‘baseline’ performance upon which the brain may improve. 

To explore these ideas further, we are conducting 

longitudinal ‘test phase (closed-loop) only’ sessions to 

investigate the adaptation of the brain to a fixed BMI model 

over sessions, and the corresponding changes in BMI 

performance with the prosthetic hand.  
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