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Abstract— Visually stimulated brain–computer interfacing
detects which target on a screen a user is gazing at; however,
this is also accomplished by tracking gaze points with a camera.
These two approaches have been independently investigated and
sometimes doubts about BCI with visual stimuli are raised in
terms of usability compared to eye tracking interfaces (ETI).
This paper answers this question by investigating information
transfer rates (ITR) and recognition accuracies of BCI and ETI
having a similar interface design, where subjects were asked to
gaze at one of four targets on a screen. Experimental results
revealed that BCI is comparable in ITR to ETI and had better
performance for relatively small targets on the screen.

I. INTRODUCTION

Brain–computer interfacing (BCI) is an emerging and
potential application of biomedical signal processing and ma-
chine learning in human computer interaction. BCI controls
a computer or a device by capturing human brain activity [1].
This technology provides another way of communication for
those who have difficulty in communicating with the external
world, e.g. people suffering from serious movement disorders
such as amyotrophic lateral sclerosis (ALS).

To implement command input, BCI captures brain activity
and/or response with instruments. A widely-used noninvasive
recording of the brain activity is electroencephalography
(EEG). Typical responses of the brain measured with EEG
are steady-state visual evoked potentials (SSVEP) which are
responses of the visual cortex to a periodic visual stimulus
such as flickering lights [2], event related potentials (ERP)
which are responses to sensory or cognitive event, and so
forth. Among them, SSVEP allows BCIs to achieve fast and
accurate command input, and various BCIs based on SSVEP
have been reported [2]. SSVEP consists of periodic signals
with the same and multiples of frequencies of the visual
stimulus. A typical SSVEP-based BCI displays multiple
visual stimuli whose flickering frequencies differ from one to
another, and a user gazes at one of them. Then, with proper
signal processing, the BCI recognizes which stimulus a user
is gazing at based on the frequency of SSVEP. For the visual
stimulus, a checkerboard, which reverses its phase at equal
time intervals, is commonly used .

On the other hand, which target on a screen a user gazes
at can be also obtained by tracking the point of gaze, i.e.
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where the user is looking with cameras. This is a so-called
eye tracking interface (ETI) which is considered to be fairly
robust [3] and a promising component of the user interface in
the future [4] because of its inherent advantages such as ease
of use and speed [3]. Methods for implementing command
selections include the ones to select a target by gazing or
dwelling for more than some fixed time [3], making gestures
with the gaze [5], blinking or winking, using a physical
button [3], or using eye movements with manual pointing
which is called MAGIC pointing [6]. Among them, the one to
input a command by gazing at a target – known as dwelling
is one of the most straightforward and commonly-used ways,
also it does not need any physical movement of limbs.

Both BCI and ETI are the user interfaces with sight,
their experimental results have been widely reported, and
it is known that both of them can achieve high precision
of recognition accuracy [3], [2]. However, to our knowledge
there have been no attempts to quantitatively compare their
performances on the same experimental platform. Therefore,
the purpose of this study is to compare their performances,
and to clarify their drawbacks and advantages. Specifically,
we compare between a SSVEP-based BCI and a dwelling-
based ETI. We evaluate their performance by investigating
their accuracies and ITR [7] with respect to the target size
and the command analysis time, i.e. time window length of
EEG analysis or the dwell time.

II. METHODS
A. Subjects and experimental settings

Five males and one female in their twenties took part in
our experiment. All subjects were healthy and had normal
or corrected-to-normal vision. They were given an informed
consent, and the study was approved by the research ethics
committee of Tokyo University of Agriculture and Technol-
ogy.

1) BCI: We used Ag/AgCl active electrodes which are
products of Guger Technologies (g.tec) named g.LADYbird,
g.LADYbirdGND (for GND), and g.GAMMAearclip (for
reference, earclip type) for recording EEG data. These were
driven by the power supply unit named g.GAMMAbox
(g.tec). The electrodes were located at Pz, Oz, O1 and O2
following the international 10–20 system. The electrodes
for GND and reference were AFz and A1, respectively.
The signals were amplified by MEG-6116 (Nihon Kohden),
that provides lowpass and highpass analog filters for each
channel. We set the cutoff frequencies of the lowpass and the
highpass filters to 100 Hz and 0.5 Hz, respectively. The EEG
signal was sampled by A/D converter (AIO-163202F-PE,
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TABLE I
Flickering frequencies assigned to BCI commands and corresponding to

visual targets on the screen.

Target Tk Location Frequency fk
T1 Top 9.2 Hz
T2 Right 10.9 Hz
T3 Bottom 12 Hz
T4 Left 13.3 Hz

Fig. 1. Time sequence of targets presentation in a trial and displayed
targets. A black dot on the targets shown in ETI targets is a gaze point of a
user. An arrow in the center of the targets prescribed the user which target
to gaze at. In the experiments, three different sizes, d = 20, 40, and 60 mm
were used for comparison.

Contec) with a sampling rate of 1200 Hz. The signals were
recorded and downsampled to 240 Hz with Data Acquisition
Toolbox of the MATLAB (MathWorks).

2) ETI: EyeFrame SceneCamera System (Arrington Re-
search) was used as an eye tracker, which is wearable as
frames of glasses and its sampling rate was 60 Hz. Dark pupil
technique [8] was used to determine the eye orientation. In
this method, an infrared light source was positioned, and it
made the iris appear light and the pupil the darkest region
in the image. We performed the calibration using Auto-
Calibrate of ViewPoint EyeTracker (Arrington Research),
which is required to map the eye orientation as the point
of gaze on the screen. During the calibration, subjects were
asked to fixate on a 3 × 3 grid of points that are displayed
one at a time in random order. Next, we recorded the
xy coordinates of the user’s gaze point using MATLAB
(MathWorks). Throughout the experiment, subjects’ heads
were fixed using a chin rest. In order to plot a black dot
with a diameter of 2 mm as the feedback of the user’s gaze
point, we used Psychtoolbox of the MATLAB.

B. Design

Targets shown in Fig. 1 were drawn with Psychtoolbox on
a display screen. For the BCI experiment, we used a desktop
computer connected to a 23 inch display with a resolution
of 1920 × 1080 and a refresh rate of 120 Hz. As illustrated
in Fig. 1, the targets were square checkerboards that reverse
black and white according to the frequencies shown in Table
I. The size of each small square of the checkerboard was

4 mm (visual angle of 0.32 deg). For the ETI experiment,
we used a laptop computer connected to a 15.6 inch display
with a resolution of 1366 × 768 and a refresh rate of 60 Hz.
During both experiments, subjects sat on a comfortable chair
in front of the screen 70 cm away so that they could look at
the display straight ahead.

As illustrated in Fig. 1, four square targets were displayed
on top, bottom, right and left on the screen. We referred to a
target as Tk in clockwise order from the top, thus a target on
top is T1 and a target on the left is T4 as listed in Table I.
Three different target sizes used in the experiments were 20
mm, 40 mm, and 60 mm on a side, which can be converted
to visual angles of 1.6 deg, 3.3 deg, and 4.9 deg. As shown
in Fig. 1, an arrow was also displayed in the center of the
targets. The arrow prescribed the user which target to gaze
at. The distance between the center of the arrow and each
target was the same as the target size.

C. Task

Each trial consisted of the fixation for one second and
the gaze of the target for two seconds as illustrated in Fig.
1. One command was determined every single trial (e.g.,
the interval of a1–c1 in Fig. 1 for the first trial). At the
beginning of a trial, the arrow was displayed with a beep
sound for a duration of 0.1 seconds. After one second, the
arrow was hidden for two seconds. Subjects were asked
to maintain fixation on the arrow until they started their
response, and to start to gaze at the prescribed target as
quickly as possible following the disappearance of the arrow.
The arrow prescribed each target equally and randomly. In
the experiment, three different target sizes (aforementioned
20 mm, 40 mm, and 60 mm) were used for comparison.
For each target size, the calibration was performed first,
then four sessions were executed. Each session included five
successive trials. Therefore, twenty commands were inputted
for each size. After each session, the task was stopped in
order to reduce the burden of the subjects’ eyes. The task
was restarted when subjects pressed the space bar.

In addition, as illustrated in Fig. 1, during the BCI experi-
ment, visual stimuli were not flickering while the arrow was
displayed, and visual stimuli started flickering soon after the
disappearance of the arrow.

Moreover, during the ETI experiment, we performed the
calibration every time we changed the target size, since the
subjects’ heads and eye tracker frames stirred easily, which
materially affected mapping the gaze point on the screen.

D. Offline data analysis

We analyzed the recordings (EEG for the BCI and gaze
positions for the ETI) offline and detected entered com-
mands. For performance comparison, we calculated the ITR
in bits/min defined [1] as:

ITR =
60
U

[
log2 K + P log2 P + (1 − P) log2

1 − P
K − 1

]
, (1)

where U [sec] is the mean time to input one command, K
is the number of selectable commands (K = 4), and P is the
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Fig. 2. Data analysis procedure. For the ETI, a closed circle represents a
moment when the gaze point enters a target, and the open circle represents
a moment when it exits the target. a, b, and c are corresponding to those in
Fig. 1.

accuracy, i.e. the probability that the recognized results meet
the desired command.

1) BCI: To detect commands, the EEG for W seconds
while visual stimuli were flickering was analyzed. We ne-
glected samples just after flickering started due to a delay of
SSVEP onset [9] as described later.

We used the method based on canonical correlation anal-
ysis (CCA) proposed by Lin et al. [10]. Let x(t) ∈ RM be
an M-channel EEG signal and y(t) ∈ R4·4 consist of ‘Fourier
basis functions’ of the 1st and 2nd harmonics of simulated
stimulus signals, which are ideal SSVEP with frequency f
given as

y(t) =
[
{sin(2π fkt), cos(2π fkt), sin(4π fkt), cos(4π fkt)}4k=1

]T
,

(2)
where the first two components are the sinusoids of the fun-
damental frequency f and the others are the 2nd harmonics.
To detect frequencies of SSVEP components contained in
the EEG for the SSVEP-based BCI systems, first, canonical
correlation ρ f corresponding to flickering frequency f is
calculated:

ρ f = max
wx,wy

wT
xE[x(t)yT(t)]wy√

wT
xE[x(t)xT(t)]wxwT

yE[y(t)yT(t)]wy

. (3)

Then, frequency f ? that maximizes the weight vector with
respect to y(t) is chosen, such as

f ? = argmax
fk∈Ω

[(
ws

fk

)2
+
(
wc

fk

)2
+
(
ws

2 fk

)2
+
(
wc

2 fk

)2]
, (4)

where Ω is the set of frequencies listed in Table I, and ws
fk

,
wc

fk
, ws

2 fk
and wc

2 fk
are the elements of the weight vector with

respect to y(t), such as

wy =

[{
ws

fk ,w
c
fk ,w

s
2 fk ,w

c
2 fk

}4
k=1

]T
. (5)

We measured the ITR with respect to two independent
variables, the target size (d [mm]), and time window length
of EEG signal analysis (W [sec]). To calculate the ITR, we
defined U in (1) as follows:

U = A + L +W, (6)

where as summarized in Fig. 2, A [sec] is the duration the
arrow is displayed, L [sec] is the time lag (the delay) of
SSVEP onset after the visual stimuli started flickering. We
set A = 1.0 sec, L = 0.1 sec, and W = 0.5, 0.6, . . . , 1.8, 1.9
sec.

2) ETI: A command was determined if the user’s gaze
has dwelled on the same target for more than the predefined
dwell time, D [sec], during the interval from b to c as shown
in Fig. 2. If the gaze point got out from the target, we reset
the dwell timer. If the gaze did not dwell on any targets for
more than the dwell time in the interval between b and c in
Fig. 2, we regarded the detection as a failure. We measured
the ITR with respect to two independent variables, the target
size (d [mm]), and the dwell time (D [sec]). To calculate the
ITR, we defined U in (1) as follows:

U = A + T + D, (7)

where

T =
1
N

N∑
i=1

Ti, (8)

where as summarized in Fig. 2, A [sec] is the duration the
arrow is displayed, Ti [sec] is the time until the gaze point
enters a target after the arrow was hidden, and N is a number
of inputted commands for each size. We set A = 1.0 sec,
D = 0.5, 0.6, . . . , 1.8, 1.9 sec, and N = 20.

3) Remarks on time window and dwell time: Though the
shortest time for W and D was set to 0.5, the offline data
analysis could allow us to a shorter time window and a dwell
time less than 0.5 sec. However, we did not take such a short
time, since in practical interfaces, a very short time interval
for command input can lead to a unneeded repeat of the same
command like a “press-and-hold” keyboard. The duration of
0.5 sec was chosen from the default duration before a press
turns into a long press in Android [11].

III. RESULTS AND DISCUSSION

Figs. 3 and 4 show box plots of the distributions of ITR of
the BCI and the ETI respectively. The horizontal axis shows
the command analysis time (time window, W for the BCI and
dwell time, D for the ETI), and the vertical axis shows the
ITR. Moreover, (a) and (b) in Figs. 3 and 4 show the results
when the target size was 20 mm and 60 mm respectively.
The band inside the box represents the median. We omit the
results when the target size was 40 mm because of lack of
space.

Figs. 3 and 4 illustrate that in terms of the target size,
the larger target (d = 60 mm) showed higher ITR than the
smaller one (d = 20 mm) for both the BCI and the ETI.
For BCIs, a previous study [12] also indicated that visual
evoked potential (VEP) response increased when stimulus
field (target size) was enlarged. For ETIs, other studies [3],
[4] also indicated that the time to input each command and
error rate decreased when the target size was enlarged. On
the other hand, in the case of the smaller target (d = 20
mm), ITRs of the ETI were consistently low (less than 10
bits/min) regardless of the dwell time, while the BCI showed
better performance in ITR as depicted in Fig. 3(a). This result
quantitatively suggests that the ETI needs sufficiently large
targets, and the BCI has an advantage in the target size over
the ETI.
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(b) Target size d = 60 mm

Fig. 3. Box plots of the ITR of the BCI
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(b) Target size d = 60 mm

Fig. 4. Box plots of the ITR of the ETI

TABLE II
Results of recognition accuracy and ITR when the target size was 60 mm.
The BCI and the ETI showed similar performance in ITR with the t-test;

p = 0.4249.

Accuracy [%] ITR [bits/min]
Mean ± S.D. Median Mean ± S.D. Median

BCI (W = 1.8 sec) 90.0 ± 12.6 95.0 31.2 ± 11.5 34.9
ETI (D = 0.5 sec) 85.8 ± 8.9 82.5 38.1 ± 14.6 32.1

Another aspect is the analysis time (time window for the
BCI and dwell time for the ETI). It can be seen from these
figures that inappropriate analysis time yields low values of
ITR. However, it is worth noting that the behavior of ITR to
the analysis time is completely different as seen in Figs. 3(b)
and 4(b). The BCI had higher ITR when the time window
was longer. This result meets the previous studies [10], [13]
Also, longer dwell time was less suitable, as claimed in the
previous works [4], [14].

It is important to note that as summarized in Table II, with
the larger target (d = 60 mm), the median ITR achieved
34.9 bits/min at W = 1.8 sec, which is slightly higher
than the highest median ITR of the ETI (32.1 bits/min at
D = 0.5 sec) with the same target size of 60 mm (See Fig.
4(b)). Therefore, both interfaces appeared similar in terms
of ITR. Indeed, the result of the t-test showed no significant
difference as stated in Table II. Also, it has been suggested
[15] that the average time window required by SSVEP-based
BCIs using CCA was 1.8 sec, which was the same as the
time window length of W = 1.8 sec that gave the best result.

IV. CONCLUSION

A comparison study on the similar design of brain–
computer interfaces (BCI) and eye tracking interfaces (ETI)
was conducted in this paper. Through the experiment of
visual target selection tasks, we proved that SSVEP-BCI was
comparable to ETI in ITR.

We observed that the ETI had higher ITR than BCI when
the command analysis time (the dwell time) was short, while
BCI had higher ITR than the ETI when the target size was
small. From these results, we would recommend the selection
of either BCI or ETI based on the size of the screen that
displays targets. If it is possible to use a large screen, ETI
can achieve fast input of commands. On the other hand, if
the size of the screen is highly limited as in the case of
smartphones and tablets, BCI would be a proper choice.
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