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Abstract— Objective: Motor unit loss associated with neu-
ropathic disorders affects motor unit activation. Quantitative
electromyographic (EMG) features of motor unit activation
estimated from the sequences of motor unit potentials (MUPs)
created by concurrently active motor units can support the
detection of neuropathic disorders. Interpretation of most
motor unit activation feature values are, however, confounded
by uncertainty regarding the level of muscle activation during
EMG signal detection. A set of new features circumventing
these limitations are proposed, and their utility in detecting
neuropathy is investigated using simulated and clinical EMG
signals.
Methods: The firing sequence of a motor neuron was simulated
using a compartmentalized Hodgkin-Huxley based model. A
pool of motor neurons was modelled such that each motor
neuron was subjected to a common level of activation. The
detection of the firing sequence of a motor neuron using a
clinically detected EMG signal was simulated using a model of
muscle anatomy combined with a model representing muscle
fiber electrophysiology and the voltage detection properties of
a concentric needle electrode.
Significance: Findings are based on simulated EMG data
representing 30 normal and 30 neuropathic muscles as well
as clinical EMG data collected from the tibialis anterior
muscle of 48 control subjects and 30 subjects with neuropathic
disorders. These results demonstrate the possibility of detecting
neuropathy using motor unit recruitment and mean firing
rate feature values estimated from standard concentric needle
detected EMG signals.

I. INTRODUCTION

Needle electromyography and nerve conduction studies
are physiological gold standards for detecting neuromuscu-
lar disorders and determining whether these disorders are
likely to be due to myopathic, neuropathic or neuromuscular
junction (NMJ) related processes. The clinical practice of
analyzing electromyographic (EMG) signals can be classified
broadly into qualitative, semi-quantitative or quantitative.
Quantitative analysis starts by clustering detected motor unit
potentials (MUPs) acquired during slight voluntary isometric
muscle contraction into distinct motor unit potential trains
(MUPTs), based on the assumption that MUPs from a single
motor unit are expected to show less morphological variation
than MUPs from other MUs [12]. Each MUPT is represented
by an estimated MUP template and the ensemble of MUPs
comprising the MUPT. A set of quantitative electromyo-
grahic (QEMG) features are then extracted to characterize
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average MUP morphology, the consistency of the morpholo-
gies of the individual MUPs belonging to the MUPT and
motor unit (MU) recruitment and firing pattern [2]. MUPT
characterizations can be used to determine whether a disorder
of nerve or muscle is likely and, if so, whether it is mild or
severe [1].
The amount of force produced by a muscle is controlled
by activating or deactivating MUs and by modulating the
firing rates of active MUs. Neuropathic processes can change
the number, territory, and contractile properties of MUs.
These pathological changes are in turn expected to induce
changes in MU activation patterns [5]. Therefore, QEMG
features estimated from the sequences of firing times of
MUPs created by concurrently active MUs are likely to be
useful for detecting neuropathy.
Earlier studies have evaluated the discriminability of MU
mean interdischarge intervals (IDIs) and their standard de-
viation using MUPTs extracted from EMG signals detected
using a single fiber needle electrode [4], [6]. A single fiber
needle electrode was used, because the selectivity of this
electrode allows the signals detected to be more reliably
decomposed into their constituent MUPTs.
Results from both of these studies demonstrated that neu-
ropathic muscles had decreased mean IDI and higher IDI
variability. Similar results were obtained in [3] using a
standard concentric needle electrode. In all these studies, the
level of contraction was measured and controlled.
Unlike these studies and others reported in the literature,
this work attempts to answer questions that, from a clinical
perspective, are more practical: (1) Can we extract dis-
criminating QEMG MU recruitment and firing rate features
from EMG signals detected using a conventional clinical
concentric needle electrode? (2) Can this be achieved using
a clinically practical signal acquisition protocol that is also
suitable for extraction of morphological features? (3) Can
these QEMG features be extracted automatically, quickly,
accurately and using a procedure the output of which can
be evaluated and validated by a physician?
These questions have been addressed through the analysis
of simulated and clinical EMG studies. Analyzing simulated
data is useful because it overcomes many inherent limitations
of clinical data such as labeling inaccuracies, non-uniformity
of disease involvement, acquisition dependence (such as nee-
dle focusing and instrumentation noise) and incompleteness
of extracted MUPTs. Simulation can also provide clearer
insight by excluding irrelevant phenomena and factors, such
as MUP instability caused by NMJ jitter, and by modeling
other relevant parameters that are very difficult to measure
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Component Description
Motor Neuron:
sj(t) =
fneuron(aj , gex)

sj(t) is the firing sequence of the jth MN.
sj(t) is a function of the soma-dendritic
equivalent cylinder diameter aj of the MN
and the steady excitatory inputs to the differ-
ent dendritic compartments gex of the MN.

Fiber Potential:
pi(t) =
fMFP(di, ci, ni, e)

pi(t) is the MFP of the ith muscle fiber
as detected by a concentric needle electrode
placed at e. pi(t) is a function of muscle
fiber diameter di, center location ci, and
neuro-muscular junction (NMJ) location ni.

TABLE I
FUNCTIONAL DESCRIPTION OF THE DYNAMIC COMPONENT MODELS.

NOTE THAT INSIGNIFICANT PARAMETERS AND THOSE ASSUMED TO BE

FIXED ARE EXCLUDED FROM THE LISTS OF INPUT PARAMETERS.
SCALARS ARE NOTATED AS LOWER CASE VARIABLES, VECTORS AS

LOWER CASE VARIABLES WITH AN OVERLINE, WHILE MATRICES ARE

NOTATED AS UPPERCASE VARIABLES WITH AN OVERLINE

experimentally, namely excitatory input to a motor neuron
(MN) pool.
Several models related to different aspects of low level
isometric skeletal muscle contraction have been developed
with different inputs, outputs, and level of detail to serve
different objectives. For instance, a detailed model of a MN
pool was built to answer neurophysiological questions such
as the schema of input distribution in [14], [15]. Nandedkar
[9], [10] devised a model focusing on electrode properties
and muscle fiber potentials (MFPs) to contrast the spatial
selectivity of different electrodes and the relationship be-
tween muscle fiber (MF) anatomy and detected EMG signal
features.
Models in [7] proposed a detailed muscle layout to investi-
gate EMG signal decomposition and analysis in a structured
manner. In this work, these models of Traub, Nandedkar and
Hamilton-Wright are combined to simulate the detection of
MN firings using concentric needle-detected EMG signals.

II. COMPOSITE MODEL CONSTRUCTION

A. Modularized Architecture

To simulate the use of concentric-needle-detected EMG
signals to quantify MN activity, the parts of the human
neuromuscular system that control MN activation and the
parts of the acquisition and analysis systems that influence
the estimation of the corresponding MU activation features
were independently modelled and subsequently combined
into a composite model composed of modularized functional
component models. The functional descriptions of the five
component models are summarized in Tables I and II.

B. Motor Neuron Model

To provide a basis for the accurate study of the quan-
tification of the firing sequence of a MN, a rigorous and
detailed MN model based on previous work completed by
[15] was developed. The key advantage of this relatively
detailed model is its ability to model MNs having different
sizes and input resistances. This model can therefore be used

Component Description
Muscle Layout:
[d, c, n,W ] =
flayout(NMU, e)

Muscle layout is defined by the MF diam-
eters d, center locations c, NMJ locations
n and the MF assignments to the NMU

MUs. The specific MF to MU assignments
are represented using matrix W . The needle
location e is an input parameter because
needle insertion causes nearby fibers to be
pushed aside.

Neuropathy: W ′ =
fneuro(d, c,W , γ, δ)

Neuropathy causes a loss of a γ fraction
of the MNs and MF reinnervation, i.e. reas-
signment of the MFs from the lost MNs to
surviving MNs, represented by matrix (W ′),
such that a surviving MN can innervate up
to δ percent more muscle fibers.

Motor Neuron Pool:
a = fpool(t)

The MU territory radii of the corresponding
MUs a belonging to the pool are modeled
as a function of the muscle force t at which
the MNs are recruited.

TABLE II
FUNCTIONAL DESCRIPTION OF THE STRUCTURAL COMPONENT MODELS.

as a building block in a MU pool model.
The main aspects of the developed model are:

• MN morphology and membrane heterogeneity are rep-
resented by 5 compartments comprised of 3 dendritic
compartments (proximal, middle, and distal), the soma,
and the initial segment. The dendritic tree is converted
into an equivalent cylinder using the method of Rall
[11].

• The membrane of a dendrite is passive, while the
time and voltage dependence of potassium and sodium
conductance of the active membrane compartments
(the soma and the initial segment) are modeled using
Hodgkin-Huxley like equations modified to match volt-
age clamp data.

• The after hyper-polarization following an action po-
tential in a MN is realized using a slow potassium
conductance.

• The inputs to the model are restricted to excitatory
synaptic conductance values gex associated with the 3
dendritic compartments.

The radii of the soma equivalent cylinder and the dendritic
equivalent cylinder are set equal. It was shown that this radius
a can be estimated from a set of preset values ( membrane
resitivity Rm, internal resistivity Ri, equivalent length of the
soma-dendritic length L, and characteristic length λ) and the
input resistance Rinput using the following formula:

a =

[
RmRi

2

]1/3
×

[
coth(L/λ)

πRinput

]2/3
(1)

The resulting system of 15 coupled differential equations is
solved using the Runge-Kutta method with a variable time
step.

C. Motor Neuron Pool Model

In [14], it was shown that the threshold force of activation
(h) in grams, i.e., the force at which a MN is recruited, can
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be modelled as a function of the recruitment order j of the
MN using:

h = 1000− 469× log(j) (2)

Rinput in MΩ is then estimated using:

Rinput = 2.5− h

600
(3)

and the potassium slow conductance time constant in ms as:
1

βq
= 13.3 + 6.7×Rinput (4)

D. Muscle Model

The activity of a MN can be determined by detecting
MUPs produced by its muscle fibers. Therefore, if the MUPs
associated with the activity of a MN can be consistently
detected in an acquired needle-detected EMG signal, the
extracted MUPT is defined as decomposable and can be used
to estimate statistics related to the firing sequence of the MN.
The simulation of a MFP pi(t) as detected by a needle
electrode requires determining the diameter of the muscle
fiber and the location of the muscle fiber and its NMJ relative
to the electrode detection surface. Therefore, the muscle
layout model of [7] which specifies the diameter d, center c
and NMJ n location of each fiber as well as its associated
MU W was used. The main stages of simulating a muscle
layout can be summarized as:
1-Assigning MU territory diameter: Both the muscle and the
constituent MU territories are assumed to have circular cross-
sectional areas. The MU sizes are sampled from a Poisson
distribution.
2-Assigning MU territory center: The two main assumptions
are: (1) there is no correlation between MU territory diameter
and MU territory center, and (2) MU centers are uniformly
distributed across the cross-sectional area of a muscle. The
algorithm developed in [7] which divides the muscle cross
section into a uniform grid was used. This algorithm then it-
eratively places MU territory centres at grid points, perturbed
by random offsets, in a randomized manner guaranteeing that
any MU is equally likely to be placed in any quadrant.
3-Assigning MF center location c: MFs are located in a
uniform grid such that a uniform density of 400 MF/mm2

is achieved.
4-Assigning MFs to MUs (W ): Each MF is assigned ran-
domly to one of the MUs which has territory including its
location. The likelihood of the ith MF being assigned to the
jth MU is estimated as a weighted sum of three factors: (1)
the distance from the MU territory center to the MF center,
(2) the number of fibers already assigned to the MU (3) the
expected number of MFs to be assigned to the MU.
5-Assigning MF diameter d: The diameters of the MFs
belonging to a given MU are sampled from a Gaussian
distribution specific to the MU. The mean MF diameter of a
MU is modified by a range of increments to account for the
fact that type-I fibers are more likely to be found in smaller
MUs.
6-Assigning NMJ location n: Because a muscle cross-
section is arbitrarily chosen to be in a x-y plane, the location

of the NMJ is modelled to be along the z axis and is drawn
from a Gaussian distribution with a 0 mean and a standard
deviation based on its MU territory diameter.
6-MF ploughing: A concentric needle electrode detection
surface is modeled as an ellipsoidal cross-sectional area at the
tip of the needle oriented at 15.95 degrees relative to the axis
of the cannula. When simulating detected EMG signals the
needle tip is assumed to be positioned at a specific location e
within the muscle and all MFs that would intersect with the
cannula are therefore assumed to have moved either above
or below the cannula, whichever is closer.
The MN pool model is interfaced to this muscle model
by assigning MNs ordered according to their recruitment
threshold to MUs ordered based on their territory diameters.

E. Muscle Fiber Potential Model

The model used to simulate MFPs is based on the work
done in [9], [10]. The concentric needle electrode is assumed
to have an ellipsoid detection surface with a major axis of
580 µm and a minor axis of 150 µm. The ellipse is modeled
using 6 line integrals spaced equally across the surface. The
MFP of the ith fiber pi(t) is calculated by convolving a
propagating transmembrane current with a weight function
related to the relative geometry of the detection surface and
the fiber location:

• Propagating transmembrane current amplitude and
conduction velocity are dependent on MF diameter di.

• Electrode weight function is the average response to
a unit impulse current of the 6 line electrode potential
response functions used to model the concentric needle
detection surface. It is dependent on the position of the
electrode e, the position of the MF center ci, NMJ ni,
and conductance properties of the extracellular tissue.

The transmembrane currents traveling toward and away from
the electrode based on e and the NMJ location ni are both
modeled. For a given position of the electrode detection
surface, a MFP is simulated for each fiber of a motor unit. If
any of the simulated MFPs of the MU has a second derivative
value of greater than 1 kV/s2, the corresponding MUPT
is considered decomposable (i.e. the corresponding MU is
considered to have been sampled and the firing sequence of
its MN is analyzed).

F. Neuropathy Model

A diffuse neuropathic process is simulated as a loss of
MNs [8]. Different levels of involvement are modeled as
the loss of different fractions γ of the total number of
MNs. It is assumed that all MUs are equally likely to be
affected by the diffuse disease process, therefore lost MNs
are randomly selected. The re-innervation process is modeled
by re-executing the MF assignment procedure described in
section II-D. However, a surviving MN can support only a
maximum number of additional fibers which is described as
a fraction δ of its original size.

4068



III. DATA ANALYSIS

A. Estimation of mean MU firing rates

The error-filtered estimation (EFE) algorithm described
in [13] was used to estimate mean MU firing rates. This
algorithm has been shown to provide accurate estimates
even when the firing sequence of a MUPT is only partially
complete or includes erroneous firings.
The EFE algorithm makes use of the fact that the probability
distribution function of the IDIs of an incomplete and/or an
inaccurate firing sequence has a peak corresponding to the
true mean IDI and other peaks at integer multiples of the
true mean IDI value.

B. Measures of MU Activation

A set of features describing a given contraction is esti-
mated from the extracted MUPTs and their associated MU
mean firing rates:

No. of decomposable MUPTs: The number of active
MUs sampled during the contraction

Contraction Mean Firing Rate (cont.MFR): Mean of
the MU mean firing rates of the MUs sampled during the
contraction

Contraction Sum Mean Firing Rate (cont.SFR): Sum of
the MU mean firing rates of the active MUs sampled during
the contraction

Contraction Mean Firing Rate Range (cont.Range):
Difference between the maximum MU mean firing rate
and the minimum MU mean firing rate of the active MUs
sampled during the contraction

IV. DATA ACQUISTION

A. Clinical Data Acquisition

Routine clinical needle EMG was performed in tibialis
anterior (TA) muscles. Following needle positioning to detect
suitably sharp MUPs (with rise times ≤ 0.5 msec) during
low level muscle contraction, a manual semiquantitative
assessment of the detected signal was completed. The level
of contraction was then increased until 40 to 60 MUPs
per second were detected and 15 sec of needle detected
signal was acquired. This was repeated at multiple distinct
needle positions. Muscles were annotated by an experienced
clinical neurophysiologist (BES) as normal or neuropathic
based on manual semiquantitative assessments of EMG
signals detected during the low level muscle contractions
across all sampled needle positions. For each needle po-
sition, MUPTs were extracted from EMG signals detected
during the increased levels of muscle contraction using a
standard DQEMG algorithm [12]. 180 contractions were
sampled from 48 normal subjects and decomposed into 838
MUPTs. 108 contractions were sampled from 30 subjects
with neuropathic muscles and decomposed into 536 MUPTs.
All data was sanitized of personal identifying information.

B. Simulated Data Acquisition

Using the muscle layout model flayout(.), 60 simulated
muscles were generated with each muscle having 120 MUs.
30 of them were modified by the modeled neuropathic
process fneuro(.). γ was set to 0.3 for the first 10 muscles, 0.4
for the second 10, and 0.5 for the last 10. δ was set to 0.5
for all neuropathic simulated muscles. Using the MFP model
fMFP(.), decomposable MUPTs detectable by a concentric
needle EMG electrode were identified.
The MN pool model fpool(.) and the MN model fneuron(.)
do not include any stochastic components, therefore there
was no need to rerun them for each muscle and/or excitation
level. The sequence of inputs applied to all MNs in the pool
was a ramp sequence of excitatory conductance in mmho:
g
(c)
ex (k) = 1.5× 10−5 + k × 10−6 where c ∈ {1, 2, 3} is the

dendritic compartment index and k is a step in the input. At
each step, the gex was maintained constant for all MNs for
2 seconds to simulate an isometric contraction.
The first set of inputs was k ∈ {0, 2, ..100}. The average
cont.SFR of normal simulated muscles was then calculated at
each step. The range of steps for which 0 ≤ avg. cont.SFR ≤
100 was found to be 2 ≤ k ≤ 8. Another fine tuned set of
inputs was then created with k ∈ {2, 2.125, 2.25, ..., 8}. It
was found that MNs of recruitement order j ≤ 85 were
recruited by k = 8.

V. RESULTS & DISCUSSION

Results from the clinical and simulated EMG studies
shown in Figure 1 demonstrate an increased cont.MFR for
neuropathic muscles compared to normal muscles at a given
cont.SFR (or No. of decomposable MUPTs). These results
are consistent to results reported in [3], [5] and suggest
that subsets of the newly proposed features can be used for
detection of neuropathy.
The increase in cont.MFR. is relatively higher for cont.SFR.
above 40 Hz. The acquisition protocol in which the contrac-
tion level is increased until 40 to 80 MUPs/s are detected has
already been shown to be efficient in extracting QEMG fea-
tures capturing MUP morphology and morphological stabil-
ity [2]. This suggests that these features can be automatically
extracted without the need to complete an additional/different
acquisition protocol and/or to measure force.
The evidence of neuropathy provided by the newly proposed
MU activation features is independent from that provided
by morphological features. Therefore, a set of features
combining both aspects, i.e., morphological and activation
features, is expected to yield more accurate categorizations
than a set including either of them individually. Moreover,
electrodiagnostic clinicians are familiar with MU mean firing
rate concepts and the EFE algorithm estimates can be easily
validated by examining the IDI distributions.
It is worth noting that in practice increasing the cont.SFR of
an EMG signal above 100 Hz makes decomposition of the
EMG signal into its constituent MUPs more difficult because
more MUP superpositions are likely to occur.
Based on our simulation results, when cont.SFR is above 20
Hz around 25% of active MUs are decomposable. This might
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a b

c d
Figure 1: (a) and (b) show the variation of Cont. MFR as the Cont. SFR and No. of decomposable MUs change respectively for clinical EMG studies.

(c) and (d) show the results as obtained from simulated studies.

explain why the results obtained using cont.Range did not
show clear discriminablity between normal and neuropathic
muscles. It is unlikely in normal muscles that MNs reflecting
the width of the full range will be sampled.

Three main limitations of the implemented composite
model can be summarized as: (1) The MN and MN pool
models used excluded some temporal details, such as sensory
feedback loops and synaptic neurodyanimcs, that could be
useful for muscle characterization. (2) Needle movement
and instrumentation noise caused by a subjects inability
to maintain a constant contraction were not modelled. (3)
The MUP model, as implemented, was not used to analyse
MUP morphological features. It is important to investigate
potential relationships between aspects of MUP morphology
and MU activation.
The firing sequences of concurrently active MUs are too
complex to be adequately described using only their mean
firing rates. Other measures quantifying the variability of
firing rates, synchrony among MUs firings and correlations
of their instantaneous firings rates might also yield dis-
criminative information taking into consideration acquisition
and analysis limitations. While MUPT features characterize
MUs, the features proposed in this study quantify a subset
of concurrently active MUs in a given muscle and therefore
can be used to characterize the muscle. New methods are
being sought to optimize integration of information coming
from features describing individual MUs as well as whole
muscles.
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