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Abstract— This study investigates ECG features, focusing on
T-wave amplitude, from a wearable ECG device as a potential
method for fitness monitoring in exercise rehabilitation. An
automatic T-peak detection algorithm is presented that uses
local baseline detection to overcome baseline drift without the
need for preprocessing, and offers adequate performance on
data recorded in noisy environments. The algorithm is applied
to 24 hour data recordings from two subject groups with
different physical activity histories. Results indicate that, while
mean heart rate (HR) differs most significantly between the
groups, T-amplitude features could be useful depending on the
disparities in fitness level, and require further investigation on
an individual basis.

I. INTRODUCTION

With increasing prevalence of lifestyle-related diseases,
there exists a need for effective and wide reaching treatment
and prevention methods [1]. Physical activity interventions
that encourage regular exercise and improve physical fitness
could meet this need, but face challenges such as high
drop-out rates and a lack of outcome measurement. Tele-
health solutions that incorporate new portable technologies
for remote monitoring could help broaden patient reach
without increasing cost compared to traditional rehabilitation
programmes [2]. It is therefore of interest to develop a
reliable fitness monitoring setup, enabling a means of both
programme evaluation and participant feedback that might
motivate adherence.

Users and context should be carefully considered in select-
ing an appropriate approach. To avoid increased burden on
healthcare systems, involvement from trained professionals
should be minimised. To encourage user acceptance, incorpo-
rated technologies should be simple to operate, comfortable
and discreet. Features selected as markers for fitness level
should favour consistent physical training between measure-
ments over activity during measurements.

A. ECG Features for Fitness Measurement

The ECG signal offers insight into cardiovascular health
without relying heavily on subject cooperation. Since physi-
cal activity programme participants are frequently enrolled as
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a result of cardiovascular risk [2], the ECG could potentially
fulfil other monitoring roles simultaneously. The T-wave of
the ECG represents ventricular repolarisation and its ampli-
tude is related to physical fitness [4]. This could be beneficial
if stable, observable changes occur with increased fitness that
offer new insight over heart rate (HR) measurements alone.

B. ePatch® ECG Recorder

The ePatch® is a CE-marked, three-lead sternal ECG
recording device capable of recording two channels of ECG
data continuously for 24 hours. It is well suited to telereha-
biltiation due to its discreet size and simple operation that
enable use outside of a clinical setting. This allows partic-
ipants to continue daily life and routine exercise sessions.

Fig. 1. The ePatch® ECG device as worn on the sternum.

II. DATA COLLECTION

A. Subject Groups

Two groups of participants are included in this study: (i) a
low fitness group comprising participants previously enrolled
in a physical activity intervention due to high risk of lifestyle-
related disease, and (ii) a high fitness group comprising
healthy, highly active participants.

1) Low fitness group: A subset of 20 participants were
recruited from a larger study (50 subjects) investigating
long term adherence to physical activity programmes in
the Copenhagen region of Denmark. All participants were
included one year after completing a physical activity in-
tervention to reduce high risk of lifestyle-related diseases.
These subjects are expected to have a relatively low fitness
level based on this common background. As this is influenced
by how strictly subjects adhered to the prescribed exercises,
non-homogeneity in fitness level can of course be expected.
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2) High fitness group: Twelve highly active individuals
were recruited for this study through fitness clubs and social
networks in Copenhagen. Subjects provided self-reported
information on weekly training hours. One recording was
discarded due to increased fever (from an unrelated in-
fection). An age- and gender- matched selection of eleven
participants from the low-fitness group was combined with
the high-fitness group, resulting in a total balanced dataset
of 22 recordings. A summary of group characteristics is
provided in table I.

B. Experimental Setup

The device was worn continuously for 24 hours, during
which time there was no specified protocol and all partici-
pants were encouraged to carry out their regular daily activity
uninhibited.

TABLE I
PARTICIPANT DATA

[ Group [ Gender ] Age [ BMI |
Low-Fitness 2M; OF | 44-69 (59.64) | 24-35 (28)
High-Fitness | 2M; OF | 49-71 (57.25) | 19-27 (23)

ITIT. SIGNAL PROCESSING METHODS

For feature extraction, characteristic points need to be
identified in the waveform. For T-amplitude and HR features
these include the R- and T-peaks. The Q-peak was included
as a useful landmark. Considering the context of remote
monitoring in exercise rehabilitation, certain requirements
and priorities were considered:

« Minimal operator intervention desirable

o Simplicity and low computational cost are prioritised
over competitive accuracy rates

« Robustness against noise and artefacts

The ePatch® includes a built in lowpass filter with cut-
off frequency of 40Hz, therefore removal of high-frequency
noise is excluded here. Various methods have been described
for overcoming baseline drift [5], which is important in
determining T-amplitude. In this paper a method for local
baseline detection is proposed in place of conventional
baseline removal methods that can attenuate T-waves due
their similarity in frequency spectrum to baseline drift.

Current methods for T-wave detection include template
matching [6], derivative methods [7], wavelet transforms
[8].[9] and phasor transforms [10] among others [11],[12].
Template matching involves selection of a template by a
skilled operator, therefore is not suitable. Many of the other
methods demonstrate impressive detection rates for T-peak
(over 99%), but are obtained using the QT database [10]
rather than data from a portable device.

In this paper, a simple derivative-based method for auto-
matic T-peak detection is proposed that performs adequately
without rigorous preprocessing. The algorithm requires a
priori knowledge of approximate QRS complex location (a
point within the QR region will suffice), and can therefore be

reproduced in combination with any QRS detection module.

R- RR interval

Fig. 2. Peak locations and ECG features depicted on an ePatch® signal.
T, and Tr are T-amplitude from baseline (feature 7) and R-peak (feature
Tr) respectively.

A. Peak Detection

The following steps are implemented to obtain peak in-
dices in the signal. There are two inputs: (i) a binary vector,
x, indicating N locations of QRS complexes, and (ii) the
ePatch® signal, y.

1) Find R- and Q- peaks: A set of N windows (~ 0.14
seconds) are centred on the indices given in x. Within these,
all local maxima are located by first applying a forward
difference operation, then finding transitions in polarity. The
largest values within the resulting sets of local maxima
are selected as R-peaks. Next, the process is repeated to
find the Q-peaks, this time finding lowest local minima
occurring before the R-peaks. This yields two vectors, r and
g, containing R and Q peak locations respectively.

2) Find T-peaks: Local regions are selected in which the
T-peaks are expected. This uses the relationship between QT
interval and HR as a guideline. For QT and RR intervals
both in seconds, this is estimated as [13]:

OT =0.4vVRR (1)
T-region boundary vectors, #yq; and t,p, are defined as:
tsiart =¢1+4('—¢1) (2)

tstop = ¢1+04Fs V Ar/Ev (3)

where g is a vector of Q-peak indices, F; is the sampling
frequency, and (r —¢q) and Ar define local QR and RR
intervals (in samples) respectively. Note that these start
and stop points do not necessarily correspond to actual T-
wave onset and offset. Within this region, the same peak-
locating technique as described for R- and Q-peak detection
is implemented to find T-peaks, resulting in a vector ¢ of
T-peak locations.

B. Baseline Estimation

To overcome the effect of baseline drift, a local baseline
offset is determined for each heart wave. Baseline regions are
defined, then, based on their sample distributions, suitable
baseline offset values are automatically selected. Baseline
region boundaries are located using local peaks and intervals
as:

bgyae =t+0.5(t—r) 4

bstop = ql —0.03F; &)
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where t — r gives RT intervals and ¢’ is a shifted version of
q indicating Q-indices of the complex following the current
baseline region. The margin of 0.03F; in (5) excludes some
of the falling slope preceding the Q-peak.

Modal values are selected as baseline offsets from the
largest of 50 histogram bins in each region. This technique
is more robust against the influence of outliers or presence
of P- or U-waves than using mean values.

wqw ~ v i

Fig. 3. Histogram of baseline region used for for baseline offset detection
(top); and example showing algorithm T-peak detection (red cross) and
baseline tracking (blue line) results (bottom).

C. Feature Set

Using the results of the peak and baseline detection, two
T-amplitude measurements and a heart rate measurement are
calculated for each ECG complex:

T=b— Tpeak (6)
Tr = Rpeak - Tpeak (N
NN = FAr ®)

where b is the baseline offset, (Tpeq) and (Rpeqr) are T-
peak and R-peak values respectively, and NN is beat duration
in seconds (normal-to-normal interval). Tr represents T-
amplitude measured from the R-peak and is thus baseline-
independent, however will be confounded with R-amplitude.
Note that using (6), T-amplitude is stored as positive for
comparability with data based on standard T-wave direction.
From each of these series, the following four features were
calculated:

e Mean (M)

o Standard deviation (SD)

o Median (Med)

o Median absolute deviation (MAD)
In the analysis, the feature abbreviations are suffixed with T
or Ty for the T-amplitude features, and NN for HR features.

IV. ANALYSIS AND RESULTS
A. T-peak Detection Performance

Random samples of ePatch® data (each participant con-
tributing equal duration) were collected to form a test set of
1,964 ECG complexes. This was analysed independently by
two cardiologists and compared with the algorithm results
for the same set. The two experts were unable to identify
a T-peak in 5.35% and 6.92% of cases respectively. Inter-
observer agreement was reported at 96.9%, and agreement
between their consensus and the algorithm at 94.4%.

B. Fair-wise Testing in Grouped Feature Set

A Welch two sample t-test was used to test for differences
in subject group means for the features. The results are
outlined in table II where marginal and high significance
are indicated by (*) and (**) respectively. For T-amplitude,
Med and MAD features seem to be most significant. For HR,
both mean and median are highly significant, and heart rate
variability (SDNN) marginally significant.

TABLE I
WELCH TWO SAMPLE T-TEST

[ Feature [ pLow [ uHigh | t [ df [ P-value |
MeanT 79.01 110.15 1.7916 12.819 | 0.096
SDT 85.65 73.55 -0.5725 | 18.597 | 0.573
MedT 68.74 104.93 2.0648 12.352 | 0.061*
MADT 18.38 30.61 2.1489 11.181 | 0.054*
MeanTg 112.28 | 223.17 3.3576 15.157 | 0.004**
SDTg 157.01 141.34 | -0.4766 | 18.623 | 0.639
MedTg 112.72 | 221.54 3.4171 15.557 | 0.003**
MADTr 36.27 59.11 2.6956 12.493 | 0.019**
MeanNN | 0.764 0.942 4.354 11.508 | 0.001%**
SDNN 0.139 0.196 2.1246 13.707 | 0.052%*
MedNN 0.767 0.951 4.3548 11.461 | 0.001%*%*
MADNN | 0.093 0.130 1.8966 15.148 | 0.077

C. Feature Correlation and Group Separation

Figure 4 shows scatter plots and Pearson correlation
coefficients among a selection of features based on the pair-
wise test results. These suggest negative correlation between
BMI and HR features (VN), and with (T) features. The
scatter plots suggest possible overlap between the groups,
but feature pairs such as (MeanNN, MADTR) still offer
reasonable separation.
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Fig. 4. Scatter plot matrix (lower triangle), where filled and empty circles
indicate high- and low-fitness groups respectively. Upper triangle shows
Pearson’s correlation coefficients for feature pairs.
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D. Data Distributions

Distributions of T, Tz and RR-interval data by group are
shown in 5, from which it appears that the T-amplitude
features from the high-fitness group contain at least two
Gaussian subsets. Fitting a Gaussian mixture model with
two components to the high-fitness T-amplitude data demon-
strated which participants contributed more to each subset.
Participants 1, 6 and 9 generated more T-amplitude data from
the Gaussian with greater mean (Fig. 6). Interestingly, these
participants also reported more training hours. Subdividing
the high-fitness group by weekly training hours < 10 (Highl)
and > 10 (High2), leads to the distributions shown in Fig.
7. Especially for T-amplitude measurement 7, the low-
fitness group and subset Highl are almost indistinguishable,
whereas High2 appears quite separate.
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Fig. 5. Feature distributions by group: T-amplitude features measured from
the baseline (top left) and from R-peak (top right); and RR interval (bottom).
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Fig. 6. T-amplitude observations of high-fitness participants, showing data
assigned to Gaussian subsets 1 (grey) and 2 (black).
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Fig. 7. Distribution of T-amplitude measured from baseline (left) and from
R-peak (TR) for low-fitness and both high subsets.

V. DISCUSSION

These early findings indicate that the described setup may
be beneficial for telehealth solutions in exercise rehabili-
tation. HR separated the groups better while T-amplitude

distributions exposed within-group disparities. Participants
reported that they did not notice wearing the device, and use-
ful features were successfully extracted automatically from
the data despite recording in a non-clinical environment.

A. Limitations

One limitation was possible overlap of fitness level be-
tween groups, with the only available fitness level indica-
tors being self-reported training hours (high fitness group),
lifestyle-disease risk (low-fitness group), and BMI data.
Also, all factors affecting T-waves could not be measured
and accounted for, thus fitness-related differences could be
masked by inter-subject variation from other sources.

B. Future Work

Further research is required investigating fitness change
in individuals. This approach would overcome limitations of
inter-subject error, and provide insight into increment sizes
to be expected in features relative to fitness increase from
physical activity interventions. Additional T-wave features,
and methods for selecting subsets from 24 hour recordings,
could also benefit this approach.
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