
  

 

Abstract— The use of a small number of surface 

electromyography (EMG) channels on the transradial amputee 

in a myoelectric controller is a big challenge. This paper 

proposes a pattern recognition system using an extreme 

learning machine (ELM) optimized by particle swarm 

optimization (PSO). PSO is mutated by wavelet function to 

avoid trapped in a local minima. The proposed system is used to 

classify eleven imagined finger motions on five amputees by 

using only two EMG channels. The optimal performance of 

wavelet-PSO was compared to a grid-search method and 

standard PSO. The experimental results show that the proposed 

system is the most accurate classifier among other tested 

classifiers. It could classify 11 finger motions with the average 

accuracy of about 94 % across five amputees. 

I. INTRODUCTION 

ELM is a vast improvement of feed-forward neural 
networks, which remarkably save the training time by 
omitting an iterative learning process. In ELM, the hidden 
node weights and biases are determined randomly while the 
output weights are calculated analytically. Therefore, the 
training time is enormously fast compared to the traditional 
neural networks.  ELM method has been used in a wide 
range of applications [1]. 

Nevertheless, the hidden node parameters, the input 
weights and biases which are arbitrarily defined, result in a 
non-optimal system. Some efforts have done to deal with 
such an optimization problem. Self-adaptive evolutionary 
ELM (SAE-ELM) [1],  and PSO-ELM [2] are a number of 
methods developed to optimize the hidden node parameters.  

ELM is not merely working on a node style. A kernel 
system can be incorporated in ELM by replacing the node 
processing structure with a kernel function. This kernel- 
based ELM is considered as a special type of least-square-
support vector machine (LS-SVM) without using output bias 
[3]. Similar to the node based ELM, the kernel based ELM 
faces an optimization problem too. The efficacy of the ELM 
greatly depends on the optimum combination of the kernel 
parameters [4]. The popular grid-search algorithm which is 
simple and direct has been used to search the optimal kernel 
parameters for several years [5]. However, the exhaustive 
grid search on a large number of the parameter space may 
result in time consuming process.      
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A particle swarm optimization (PSO) algorithm can be a 
promising solution for optimizing the kernel parameters in 
the kernel-based ELM. Nevertheless, PSO tends to get 
trapped in the local minima. One solution that can used to 
deal with a local minimal problem in PSO is by mutating the 
swarm particles using a wavelet function [6]. This work 
proposes swarm-wavelet based ELM, an optimization of the 
kernel-based ELM using hybridization of PSO and wavelet. 

On the other hand, in reality, the amputees experience 
different limb amputation. As a result, it is difficult to place 
electrodes on the forearm for EMG signal acquisition. This 
circumstance can be solved by involving a limited number of 
electrodes without compromising the classification 
performance. Recently, the use of two EMG channels in the 
myoelectric-pattern-recognition system has been 
investigated. Khushaba et al. [7]  utilized two EMG channels 
to recognize ten finger movements with accuracy of 
approximately 92 %. Moreover, Anam et al. [5] succeeded 
to classify ten finger motions by accuracy of roughly 98 %. 

However, those pattern-recognition systems were 
implemented only on the able-bodied subjects. To the 
author’s knowledge, no one has employed two EMG 
channels on the amputees. Utilizing a small number of EMG 
channels on the amputee is a challenge. For that reason, a 
powerful classifier should be developed and implemented. 
This work proposes a swarm-wavelet-based ELM for 
classification of the finger motions on the amputee subjects.   

II. METHODS 

A. Proposed Method 

This work utilized a state-of-the art of pattern recognition 
method for EMG signal. It comprised data acquisition 
process, filtering and windowing on the collected data, and  
feature extraction using a combination of time-domain 
features and autoregressive parameters. Moreover, the 
system also consisted of dimensionality reduction using 
spectral regression discriminant analysis (SRDA), an 
extension of linear discriminant analysis (LDA), and 
classification using swarm-wavelet ELM.     

B.  Data Collection 

This work utilized data collected in [8] recorded from five 

transradial amputees aged 25-35 years old. The demographic 

of the amputees is presented in Table I. Eleven pairs of self-

adhesive Ag-AgCl electrodes forming 11 electrode pairs 

were located on the forearm of the amputee subjects with 

different levels of transradial amputation [8]. 
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TABLE I.  DEMOGRAPHIC OF THE AMPUTEE INVOLVED IN THE 

EXPERIMENT 

ID 
Age 

(year) 

Missing 

hand 

Dominant 

hand 

Stump 

length 

(cm) 

Stump 

circumference 

(cm) 

Time since 

amputation 

(year) 

A1 25 Left Right 13 27 4 

A2 33 Left Right 18 24 6 

A3 27 Left Right 16 23 4 

A4 35 Left Right 23 26 8 

A5 29 Left Right 24 26 7 

 
Data were recorded using a custom-built multichannel 

EMG acquisition device developed in [8]. It consists of a 
1000-gain-factor amplifier for each channel and two analog 
filters (a fourth-order Butterworth low-pass filter with the 
cut-off frequency of 450 Hz and a second-order Butterworth 
high-pass filter with a cut-off frequency of 10 Hz). 
Furthermore, the interface employed a USB data acquisition 
device (USB-6210 of National Instruments) with sample rate 
of 2000 Hz and 16-bit resolution. In addition, two digital 
filters, a pass-band frequency 20-450 Hz and a fifth-order 
Butterworth notch filter at 50 Hz were also implemented. 
Acquired EMG signals were stored and displayed in a PC 
that run LABVIEW software from National Instruments. 

The amputee subjects were asked to imagine performing 
eleven individual finger movements plus one rest state (R). 
The individual finger movements consisted of a thumb 
abduction (Ta), thumb flexion (Tf), index finger flexion (If), 
middle finger flexion (Mf), ring finger flexion (Rf), little 
finger flexion (Lf), thumb finger extension (Te), index finger 
extension (Ie), middle finger extension (Me), ring finger 
extension (Re), and a little finger extension (Le). 

C. Features extraction 

Sixteen features were extracted from Time domain 
features (TD) and Autoregressive features (AR). The 
combination comprises mean absolute value (MAV), mean 
absolute value slope (MAVS), zero crossings (ZC), slope 
sign changes (SSC), waveform length (WL), sample 
skewness (SS), root mean square (RMS), Hjorth time 
domain parameters (HTD), and six-order autoregressive 
(AR) model. 

All features extracted from all EMG channels are 

concatenated to create a large feature set. As a result, the 

dimension of the feature set is enormous. Then the number 

of features were reduced using Spectral Regression 

Discriminant Analysis (SRDA) [9]. In SRDA, the feature set 

is reduced and projected to c-1 features where c is the 

number of classes. Furthermore, aforementioned features 

were segmented by using a sliding window with the length of 

200 ms shifted by 25 ms. The period was selected in order to 

meet the optimal window length [10] and the optimal 

controller delay time [11]. 

D. Extreme Learning Machine 

Huang  et al. [4] presented ELM as a generalization of 
single-hidden-layer feed-forward networks (SLFNs). One of 
the attractive features of the ELM is that the hidden layer 
does not need to be tuned, and its nodes implement a random 
computational process which is independent of the training 
data. In training mode, the aim of ELM is to attain the 

smallest training error and norm of output weights, which is 
different from traditional learning algorithm of SLFNs. In 
addition, if the feature mapping of the hidden node is 
unknown to the user, several kernel functions can be used 
[4]. 
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where T
1[ , ..., ]i i imw ww =  denotes the vector of the weight 

linking the ith hidden neuron and the input neurons. 

Moreover, T
1[ , ..., ]i i inw w =  defines the weight vector of the 

ith hidden neuron, T
1( ) [ , ..., ]j j jmf x f f=  is the output vector 

of SLFN, bi is the threshold of the ith hidden neuron and g(x) 
is the activation function of the hidden node. The right part 
of equation 1 is the compact form of SLFN output where  
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In ELM, the input weights wi and the biases bi are 
assigned randomly while the output weights are calculated 
analytically using the following equation: 

  †  G T  (4)      

where †G is the Moore-Penrose generalized inverse of the 

matrix G. Furthermore, Huang et al. [4] also introduced the 
optimization problem of ELM for the multi-class classifier in 
such a way that the equation (4) becomes: 
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where C is a user-specified parameter. Eventually, the output 
function of SLFN in the equation (1) can be modified to 
become: 
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where g(x) is a feature mapping (hidden layer output vector) 
which can be presented by: 

 
1 1[ ( , , ), , ( , , )]L LG a b x G a b xg(x)

 

(7)

 
In (7), G is a non-linear piecewise continuous function such 
as a sigmoid, hard limit, Gaussian, and multi quadratic 
function. If the feature mapping h(x) is not known, a kernel 
function can be used to represent h(x). Then, the equation (6) 
would be: 
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In the above equation, K is a kernel function like a radial 
basis function as shown in (10).  
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E. Particle Swarm Optimization with wavelet mutation 

In PSO, a swarm of particles moves in an n-dimensional 
search space of the possible solution of the problem. A 
position and a velocity represent a particle in the swarm. 
Some generations that are generated to update the particle’s 
positions and velocities explore the promising domain to find 
the best solutions which spread throughout the swarm. The 
parameter adaptations are given by: 

 ( 1) ( ) ( 1)i i ix t x t v t     (11) 

 1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i i i i iv t v t c r p t x t c r g t x t          (12) 

where ip  denotes the best previous (local) position and g
 

denotes the best global position. Moreover, t represents the 

generation and  is inertia weight. Other two parameters, c1 
and c2 are acceleration constants that are weighted by r1 and 
r2, a random function in the range of [0-1]. According to 
[12],  total number of c1 and c2 should exceed 4 to assure the 
convergence. Following the work of [12], the c1 and c2 are 

set at 2.05 while  is 0.9. In addition, the optimization was 
done until 150 generations with 30 particles in each 
generation. 

The wavelet mutation in PSO was proposed by [6]. A 

mutation chance is driven by a mutation probability pm  [0 
1]. If xi(t) is selected to be mutated then a new position is 
given by:   
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where  is a Morlet wavelet function, parmax and parmin are 

the maximum and minimum position, respectively.  
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The equation of “a” in the Morlet wavelet is determined by 

the following equation: 

 

ln( ) 1 ln( )
t

h h
T

w m

a e


 

    
   (15) 

According to [13], α is randomly generated while pm is 0.1, 

h=1000, and θwm is 1. 

The objective of the optimization using wavelet PSO is to 

find the best kernel-based ELM parameters which minimize 

the classification error of the finger motion recognition. A 2-

fold cross-validation was employed to measure the error.  

Moreover, the fitness function of particle x is defined by 

 

N um ber of uncorrect sam ples
100%

T otal num ber of testing sam ples
( ) xf x   (16) 

The optimization was implemented in Radial basis 

function kernel only along with the parameter’s range of C is 

[2
-20

, 2
20

], and  is [2
-20

, 2
20

]. 

III. RESULT AND DISCUSSION 

Three experiments using three different methods were 
performed. These three methods are the grid-search method, 
PSO, and PSO with wavelet mutation. Classification 
accuracy is employed to investigate their performances in 
classifying twelve finger-motion classes on five amputee 
subjects sing two EMG channels. Figure 1 presents the 
experimental result. 

Figure 1 shows that, on average, the ELM that was 
optimized using the wavelet-PSO (swarm-wavelet-ELM) 
achieved the best performance compared to the ELM 
optimized utilizing PSO (swarm-ELM) and the grid-search 
method (grid-search-ELM). Moreover, swarm-ELM attained  
similar accuracy to swarm-wavelet-ELM on all amputees 
except on the amputee S1 and S3. In these two amputees, the 
swarm-ELM is less accurate than the swarm-wavelet-ELM  
and grid-search-ELM. Probably, the PSO on the swarm-
ELM trapped on the local minima. Figure 2 gives clearer 
information about this assumption. Figure 2 shows that, after 
30th generation, the PSO did not change the fitness value. 
Meanwhile, the wavelet mutation helped the PSO to avoid 
the local minima. 

 

 
 
 

 

 
Fig 2.Average best fitness of PSO and wavelet-PSO across five amputees 

 
Fig 1. Average classification accuracy of three different ELM methods 

4194



  

A statistical test on the accuracy using one-way ANOVA 
(p was set at 0.05) was also done.  The performance of the 
swarm-wavelet-ELM is significantly different from swarm-
ELM (p<0.05). In addition, the grid-search ELM attained the 
average accuracy which is significantly similar to the swarm-
wavelet-ELM (p>0.05). Although the grid-search-ELM and 
swarm-wavelet-ELM are statistically similar, their average 
accuracy is different. The swarm-wavelet-ELM achieved the 
average accuracy of 94.27 %, while the grid-search-ELM 
attained the average accuracy of 93.69. As for the swarm-
ELM, it attained the average accuracy of 92.55 %. 

In addition, the classification performance in regards to 
the finger motion were performed too. As shown in Figure 3, 
the swarm-ELM classified the flexion motions with the 
average accuracy more than 90%. In contrast, it identified 
the extension motions with the average accuracy less than 
90%. As for the swarm-wavelet-ELM, similar to the swarm-
ELM, it recognized the flexion motions better than the 
extension motions, but with accuracy better than the swarm-
ELM.  
  The confusion matrix in Table 2 provides information 
about the misclassified finger motions. According to the 
Figure 3, the swarm-wavelet-ELM poorly classified the 
little finger extension (Le), middle finger  extension (Me), 
and  ring finger extension (Re). Me was mostly misclassified 
to the thumb abduction (Ta) and middle finger   flexion (Mf). 
Furthermore, the system mostly misclassified the little finger  
extension (Le) to Re and vice versa. Although the 
misclassified motions were present, arguably the swam-
wavelet-ELM has succeeded in recognizing different finger 
motions on five amputee subjects with accuracy of  about 
94% in which it is a promising result compared to others [8].  

IV. CONCLUSION 

The proposed pattern-recognition system, which employs 
PSO mutated using a wavelet function to optimize the 
kernel-based ELM, was able to recognize eleven imagined 
finger motions on five transradial amputees with the high 
accuracy of 94.27 % even though it employed  only two 
EMG channels. The proposed system performed better than 
the grid-search-ELM and the standard-PSO-ELM. This 
promising result encourages the real-time implementation to 
verify the capability of the proposed system. 
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Fig 3. The accuracy of different finger motions across five amputees 

TABLE II.  THE CONFUSION MATRIX OF THE CLASSIFICATION RESULTS 

OF SWARM-WAVELET ELM AVERAGED FOR FIVE AMPUTEES (UNITS : %) 

 

Intended Task 

 Lf Rf Mf If Le Re Me Ie R Tf Te Ta 

C
la

ss
if

ie
d

 T
a

sk
 

Lf 98.2 0.5 0.1 0.0 0.0 0.0 0.1 0.3 0.0 0.4 0.0 0.3 

Rf 0.8 98.4 0.6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

Mf 0.2 0.7 95.8 0.3 0.3 0.8 0.9 0.6 0.0 0.0 0.3 0.2 

If 0.2 0.1 0.1 97.7 0.3 0.3 0.2 0.1 0.0 0.7 0.1 0.3 

Le 0.0 0.0 0.4 0.3 90.1 4.6 1.8 0.2 0.0 0.6 1.0 0.9 

Re 0.1 0.0 0.7 0.2 3.8 89.8 2.1 0.2 0.0 0.6 0.7 1.7 

Me 0.2 0.0 1.3 0.3 2.4 3.1 88.6 1.3 0.0 0.4 0.7 1.8 

Ie 0.1 0.0 0.7 0.3 0.2 0.2 1.0 94.8 0.1 0.2 1.7 0.8 

R 0.1 0.0 0.0 0.2 0.1 0.0 0.0 0.1 99.1 0.3 0.0 0.0 

Tf 0.1 0.0 0.0 1.3 0.9 0.5 0.2 0.2 0.1 96.0 0.4 0.2 

Te 0.0 0.1 0.3 0.1 1.2 0.9 0.7 2.0 0.0 0.7 92.8 1.1 

Ta 0.0 0.0 0.3 0.4 1.2 2.3 1.1 0.3 0.0 0.2 1.2 93.0 
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