
  

 

Abstract—Obstructive sleep apnea (OSA) is a common sleep 

disorder. OSA is associated with several anatomical and 

functional abnormalities of the upper airway. It was shown that 

these abnormalities in the upper airway are also likely to be the 

reason for increased rate of apneic events in the supine position. 

Functional and structural changes in the vocal tract can affect 

the acoustic properties of speech. We hypothesize that acoustic 

properties of speech that are affected by body position may aid 

in distinguishing between OSA and non-OSA patients. We 

aimed to explore the possibility to differentiate OSA and non-

OSA patients by analyzing the acoustic properties of their 

speech signal in upright sitting and supine positions. 35 awake 

patients were recorded while pronouncing sustained vowels in 

the upright sitting and supine positions. Using linear 

discriminant analysis (LDA) classifier, accuracy of 84.6%, 

sensitivity of 92.7%, and specificity of 80.0% were achieved. 

This study provides the proof of concept that it is possible to 

screen for OSA by analyzing and comparing speech properties 

acquired in upright sitting vs. supine positions. An acoustic-

based screening system during wakefulness may address the 

growing needs for a reliable OSA screening tool; further studies 

are needed to support these findings. 
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I. INTRODUCTION 

Obstructive sleep apnea (OSA) is a sleep disorder 

affecting 3% to 7% of adults [1], characterized by recurrent 

obstruction of the upper airway and snoring during sleep. 

OSA severity is defined by the apnea-hypopnea index (AHI), 

which is the average number of apneas and hypopneas during 

one hour of sleep. OSA is associated with fragmented sleep, 

excessive daytime sleepiness, and cardiovascular morbidity 

[2] . 

The accepted gold standard diagnostic study for OSA is 

polysomnography (PSG). During PSG study various 

biological signals are recorded [3]. PSG is time consuming, 

expensive, and uncomfortable for the patient; because of 

these disadvantages many patients remain undiagnosed [1] 

and alternative cost-effective approaches for OSA diagnosis 

are needed. 
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Several studies have confirmed that OSA is associated 

with anatomical and functional abnormalities of the upper 

airway [4, 5] that can affect speech [6, 7]. Anatomic and 

functional differences in the vocal tract components can 

affect the acoustic properties of speech [8]. Fox et al. [9] 

hypothesized that some acoustic speech features of patients 

with OSA may be distinct from those of non-OSA subjects; 

using a perceptual study it was found that patients with OSA 

suffer from resonance, phonation, and articulation 

irregularities. Robb et al. [10] found differences in formant 

band-width and frequencies of OSA and non-OSA subjects' 

vowels; Pozo et al. [11] found disparity in the distance 

between second and third formant frequency of the vowel /i/ 

in severe OSA patients and non-OSA patients. We recently 

found that acoustic features from speech signals during 

wakefulness can detect OSA patients with good specificity 

and sensitivity; however, in this study speech signals were 

analyzed only in the upright sitting position [12]. 

The combination of several elements such as unfavorable 

airway geometry, increase in collapsibility, gravity, and 

inadequate dilator muscle compensation, is likely to be the 

reason for increased frequency and severity of OSA in the 

supine position [13]. Pae et al. [14] compared cephalograms 

and tongue EMG recordings of awake healthy subjects and 

OSA patients, in both supine and upright positions. Statistical 

differences were found in tongue cross-sectional area, 

oropharyngeal cross-sectional area, and resting genioglossus 

EMG activity. Martin et al. [15] studied the effect of posture 

on upper airway cross-sectional areas using acoustic 

reflection in awake OSA patients, snorers without OSA, and 

healthy subjects. OSA patients had smaller decrease in cross-

sectional areas when moving from upright sitting position to 

supine, than both snorers and controls. Montazeri et al. [16] 

have recorded tracheal breath sounds of awake subjects in the 

upright sitting and supine positions. Using power spectrum, 

Kurtosis, and Katz fractal dimensions analysis, classification 

accuracy of 83% was achieved when classifying subjects into 

two groups, non-OSA or mild vs. moderate and severe. 

Based on these evidences concerning the association 

between OSA and speech, and OSA and body position, we 

hypothesize that some of the speech features of OSA patients 

might be modified when moving from upright sitting position 

to the supine position in a different manner and extent than 

those of non-OSA subjects. 

Few studies with the objective of OSA/non-OSA 

classification using speech signals have been conducted [11, 

12, 17, 18]. However, the novelty of our study is reflected by 
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exploiting the body position as a tool to highlight the 

acoustic changes arising from anatomical and functional 

abnormalities associated with OSA. Moreover, the proposed 

method uses sustained vowels solely, and therefore has the 

major benefit of a language-independent method. Using 

speech signal records of awake patients in the upright sitting 

and supine positions, we explored the ability to differentiate 

between OSA and non-OSA subjects using a simple classifier 

such as linear discriminant analysis (LDA). 

II.    METHODS 

A. Subjects and Data 

The database for this study consists of 35 male subjects' 
speech recordings. Subjects were referred to the Sleep-Wake 
Unit of Soroka University Medical Center for PSG study in 
order to evaluate sleep-disordered breathing. Subjects were 
recorded immediately prior to PSG study, using a digital 
audio recorder (Handy recorder "H4" by "ZOOM"), 
pronouncing the sustained vowels /a/ and /e/ for about 2 
seconds, in the upright sitting and supine positions. We chose 
to use sustained vowels only, since several studies [19-21] 
have indicated that sustained vowels are more affected by 
body posture; moreover, this scheme reduces the influence of 
subjects' cooperation and accent. We recorded at a sampling 
rate of 44.1 kHz. Subjects' age, BMI, and AHI are 
summarized in Table I. Subjects were divided to two groups 
using a conventional cutoff value of 10, i.e., OSA patients 
(AHI>10) and non-OSA subjects (AHI≤10) [22]. 

B. Preprocessing and Feature extraction 

For each subject, four speech segments were labeled: /a/-

supine, /a/-upright, /e/-supine, /e/-upright. Then, a 

preprocessing procedure of DC removal, normalization, and 

pre-emphasizing was applied. 

Our study focuses on body posture effects; therefore, we 

decided to use features that can reveal morphological 

changes. Linear predictive coding coefficients (LPC) 

represent the speech signals’ spectral envelope that models 

the vocal tract as a linear filtering system; therefore, 

differences in the vocal tract shape could be conveyed by the 

LPC. From each segment, 48 LPC coefficients were 

extracted [8]. 

In order to explore differences between OSA and non-

OSA subjects in the upright position, in the supine position, 

and finally the differences between the positions, we created 

3 feature vectors for each subject: the first, containing 48 

LPC coefficients for each vowel in the upright sitting 

position; the second, containing 48 LPC coefficients for each 

vowel in the supine position; and the third, containing the 

subtraction of the second from the first. Finally, we 

concatenated the 3 feature vectors into one vector. 

C.  Feature selection 

We ran a two-tailed t-test on each of the features in order 

to find the most discriminative features. Since the number of  
 

TABLE I.  SUBJECTS' CHARACTERISTICS 

Group Number 

of 

subjects 

AHI 

[events/hr] 

(range) 

BMI [kg/m2] 

(range) 

Age [yr] 

(range) 

AHI 

  10 
12 

5.33 2.31  28.00 5.10  39.64 16.18  

(1.40-9.50) (23.00-40.60) (19.1-69.5) 

AHI 

  10 
23 

28.30 19.69  30.01 3.84  47.64 11.75  

(10.20-64.30) (17.00-38.30) (27.10-71.90) 

The values are presented as mean ± SD corresponding to the relevant units. 

 

tested hypotheses is large, we used the weighted Bonferroni 

correction [23]. Using a large number of features for 

classification in a small population can cause over-fitting; 

therefore, the K-best scheme was applied. We chose the most 

significantly different features between OSA and non-OSA 

groups (i.e., features with the lowest p-value). Since our 

database is relatively small, we limited the number of 

selected features to two. 

D.  Classification 

Using the selected features, we experimented and 

evaluated the LDA classifier. We have also compared the 

LDA performance to the K nearest neighbors (KNN) 

classifier, which is also considered as a simple classifier. 

LDA classifier: assuming two normal distributions, the Bayes 

decision rule, is a quadratic function of the observations. The 

Bayes optimal solution is to classify points as being from the 

first class if the log-likelihoods ratio (LLR) is above some 

threshold [24]: 
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where x is the feature vector, ,O NOμ μ  and ,O NOΣ Σ  are the 

mean vectors and covariance matrices of the OSA group and 

the non-OSA group class conditional densities, respectively. 

,O NOP P  are the a priori probabilities. When assuming that 

both groups have the same pooled covariance matrix, the 

Bayes decision rule can be expressed as a linear function of 

the observations [24]: 
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KNN classifier: for each test sample, K nearest neighbors are 

found by calculating the distance of the test sample from 

each of the samples. The number of neighbors from each 

class among the K selected samples is calculated. The test 

sample is then classified by a voting procedure, i.e., by a 

majority of the KNNs. In this study we chose to use 3 

neighbors, with the Euclidean metric; unity standard 

deviation normalization was applied. 

To evaluate classifiers' performances we have used the 

Leave one out (LOO) and K-fold (K=5) cross-validation 

schemes; a comparison to the resubstitution optimistic results 

was taken as well. Classifiers' performance was evaluated 
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III. RESULTS & DISCUSSION 

The K-best feature selection procedure resulted in the two 

features presented in Table II. Fig. 1 presents boxplots of the 

selected features; good separation ability can be seen. The 

selected features both belong to the sustained vowel /e/, 

which might indicate greater differences between OSA and 

non-OSA patients during the pronunciation of this vowel. 

This result is supported by Fiz et al. [25], who found 

significant differences in the maximum frequency of 

harmonics of /e/ and /i/, but not in /a/,/o/,/u/. 

Due to a relatively small sample size, we have chosen a 

relatively simple procedure and criterion for the feature 

selection process. Since we have chosen the K-best 

procedure, i.e. each feature is tested separately; we had to 

examine also the difference features, which are actually a 

linear combination of the upright and supine features. 

Moreover, from a clinical point of view these features enable 

us to examine our main hypothesis that some of the speech 

features of OSA patients might be modified when moving 

from upright sitting position to the supine position in a 

different manner and extent than those of non-OSA subjects. 

To evaluate the ability to differentiate between OSA and 

non-OSA subjects, both the KNN classifier and the LDA 

classifier were tested; both of these classifiers do not prone to 

over-fit when using a relatively small sample size due to 

relatively small number of required parameters. Table III 

summarizes the classifiers' performances as evaluated using 

the LOO, K-fold, and resubstitution schemes. Overall, one 

can see that the LDA classifier outperformed the KNN 

classifier. The best performance was achieved using two 

features. Using the K-fold scheme sensitivity of 92.7% and 

specificity of 80% were achieved.  Fig. 2 presents a scatter 

plot of the data and the decision boundary as determined by 

the LDA classifier using the resubstitution validation scheme. 

One can see that a linear decision boundary is a suitable 

choice in this case. 

TABLE II.  SELECTED FEATURES 

Selection 

order 

Vowel Feature 

type 

LPC 

coefficient 

Symbol 

1 /e/ Difference 42 e_diff_42 

2 /e/ Upright 47 e_up_47 

TABLE III.  CLASSIFIERS' PERFORMANCE 

Classifier Number of 

features 

Validation 

scheme 

Performance* 

LDA 

1 
Resubstitution 

81.8 (90.5, 66.7) 

2 87.9 (90.5 ,83.3) 

1 
K-fold 

77.7 (92.7 ,65.0) 

2 84.6 (92.7 ,80.0) 

1 
LOO 

78.8 (90.5 ,58.3) 

2 81.8 (85.7, 75.0) 

KNN 

1 
K-fold 

82.9 (92.7, 75.0) 

2 82.9 (92.7, 75.0) 

1 
LOO 

71.4 (73.9, 66.7) 

2 80.0 (82.6, 75.0) 
*
The values are presented as accuracy (sensitivity, specificity) in percentage. 
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Figure 1.  (A)  boxplot of e_diff_42 (the difference between the 42nd LPC 

coefficent of the vowel /e/ in the upright and the supine positions); (B) 

boxplot of e_up_47 (47th LPC coefficent of the vowel /e/ in the upright 

position); central marks indicate medians, box edges indicate the 25th and 

27th percentiles. 
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Figure 2.  A scatter plot of the data and the decision boundary as 

determined by the LDA classifier using the resubstitution validation 

scheme. 1x  and 2x  represent e_diff_42 and e_up_47, respectively. The 

solid line represents the LDA decision boundary, the circle markers 

represent subjects with AHI≤10, the triangle markers represent subjects with 

AHI>10. 

IV. CONCLUSIONS & FUTURE WORK 

This study provides evidence that using sustained vowel 

recordings in different body positions can highlight acoustic 

4226



  

differences between OSA and non-OSA subjects. Our system 

is based on sustained vowel recordings; therefore, it may 

provide an accent- and language-independent, simple to use 

screening tool for OSA. Further studies are needed to 

reinforce our findings in a larger database; more complex 

classifiers should be considered as well. 

The proposed method can be used as a screening for OSA. 

Such a tool may reduce the number of undiagnosed patients 

and unneeded PSG studies. 
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