
  

 
 

Figure 1.  The microphone and neckband used (left); how the 

microphone was mounted on the subject (right). 

 

Abstract— Obstructive sleep apnea (OSA) is a widespread 

disorder that is cumbersome to diagnose using the gold-

standard, overnight polysomnography (PSG). This paper 

highlights further development of our Awake-OSA method for 

predicting whether someone has severe sleep apnea using 

breath sounds recorded during wakefulness.  We propose the 

use of an expert classification approach that consists of 

individual majority-voting classifiers. Each classifier is trained 

to distinguish one class of subject from all other classes. The 

outcomes of these classifiers are, in turn, combined using a 

truth matrix to determine the final outcome. Using the breath 

sound features of 249 subjects, the classifiers attempted to 

classify 180 subjects as either non-OSA (AHI less than 5) or 

severe-OSA (AHI greater than 30). 79% and 75% of OSA and 

non-OSA subjects, respectively, could be classified. Of those 

classified, the resultant testing sensitivity and specificity were 

found to be 78% and 86%, respectively. The consistency of the 

testing to training accuracies indicates the robustness and 

generalizability of using multiple expert classifiers on the 

dataset. This technique has the potential to be used in a 

doctor’s office to rapidly and cheaply pre-screen for OSA, so 

that physicians may be better able to determine which patients 

are in need of overnight PSG. 

I. INTRODUCTION 

Obstructive sleep apnea (OSA) is a prevalent disorder 
that affects at least 2% of women and 4% of men above the 
age of 30 [1]. It is believed that many people with OSA are 
undiagnosed [2]. If left undiagnosed and untreated, evidence 
suggests an increased risk of hypertension and traffic 
collisions [3]. The gold standard method of sleep apnea 
diagnosis is overnight polysomnography (PSG), which is 
costly, time-consuming, and has long wait times between 
subject referral and diagnosis. Furthermore, in the dataset 
examined in our previous studies [4, 5], the greatest 
proportion of subjects referred to overnight PSG did not have 
severe OSA that required treatment. Thus, a low-cost method 
of pre-screening subjects to identify those who could benefit 
most from overnight PSG would enable more efficient 
utilization of sleep clinic resources, thereby reducing 
healthcare costs. Since those with OSA tend to have a 
narrower upper airway during wakefulness [6], the effect of 
this anatomical difference on subjects’ breath sounds might 
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be exploited during wakefulness as a quick and inexpensive 
pre-screening tool; with such a tool it would be possible to 
determine whether the time and expense of an overnight PSG 
is justified. Studies conducted by members of our research 
group demonstrate the potential that breath sounds recorded 
during wakefulness have in screening subjects for OSA [4, 
5]; we call the classification method that has arisen from this 
research “Awake-OSA”. In this study, we collected 
additional data, modified our previous classification 
techniques [4], and found the cross-validated sensitivity and 
specificity of our classifier. 

II. METHODS 

A. Data Collection 

The data in this study consists of a dataset adopted from 
our previous studies [4, 5], and new data which has since 
been collected. All data were collected from consenting adult 
subjects who were referred to the Sleep Disorder Centre, 
Misericordia Hospital, Winnipeg, Canada, prior to 
undergoing overnight polysomnography (PSG). Data 
collection for this study was approved by the biomedical 
research ethics boards of both the University of Manitoba and 
Misericordia Hospital. The tracheal breath sounds of each 
subject were recorded using a Sony microphone (ECM-77B) 
embedded in a 6 mm diameter chamber with a 2 mm 
cylindrical space between the microphone and the skin, and 
placed over the suprasternal notch of the subject’s neck. The 
chamber was attached to the skin with double-sided adhesive 
tape. The microphone and chamber were held in place with a 
soft neckband, which was fastened gently around subject’s 
neck (Fig. 1). Sound signals were amplified with a gain of 
200, band-pass filtered with cut-off frequencies of 0.05 Hz to 
5 kHz, and sampled at a rate of 10240 Hz, all using Biopac 
(DA100C) amplifiers. The cut-off frequencies were chosen 
within the available filter options of the amplifier to remove 
DC and avoid aliasing. 

 The subjects were instructed to breathe deeply, following 
the hand gestures of the experimenter to ensure constant 
airflow, in 4 configurations: (i) nose and (ii) mouth breathing 
while upright, (iii) nose and (iv) mouth breathing while 
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supine. All recordings started with the inspiratory phase. The 
apnea-hypopnea index (AHI), a measure of sleep apnea 
severity, as determined by a trained sleep technician at the 
hospital, was later collected from the sleep clinic. 

Both datasets combined contain 308 subjects with usable 
sound data (Table 1). The subjects were assigned to three 
classes of OSA severity based on their general categorical 
diagnosis: 122 subjects (66 males, average age 50 ± 13 years) 
with AHI≤5 do not have OSA (G1); 69 subjects (44 males, 
average age 56 ± 12 years) with 10≤AHI≤25 have moderate 
OSA (G2); 58 subjects (47 males, average age 51 ± 11 years) 
with AHI≥30 have severe OSA (G3). 

We used the G1, G2, and G3 subjects to train our expert 
classifiers, but tested the classifier using only the G1 and G3 
subjects. In other words, in this pilot study, we only focus on 
two-class classifications, while the data from three classes are 
used for training. 

B. Signal Conditioning 

We manually sequestered the tracheal respiratory sounds 
into their inspiratory and expiratory phases. We always 
started recording at the inspiratory phase; however, we 
verified the respiratory phases by auditory and visual 
inspection of the spectrogram of the data. We listened to all 
individual breath sounds, and those which contain noise from 
an external source (eg. door slamming) or internal source (eg. 

thumps caused by mucus) were discarded. 

In both the old and new datasets, 300 ms of audio was 
isolated from each usable breath corresponding to the upper 
40% of respiratory flow [7] using the following steps (note 
that these steps are not used to modify the breath sound, they 
are only to select a 300 ms segment of the breath sound 
within the middle of the respiratory phase). (1) Band-pass 
filter the isolated breath sound using a second order 
Butterworth filter between 500 and 2500 Hz to prevent low 
or high frequency noise from influencing the log-variance 
plot generated in step 4. (2) Normalize the signal by zeroing 
the mean and dividing by the standard deviation. (3) Slide a 
hamming window across the whole signal. (4) At each new 
position, multiply each segment by the hamming window and 
calculate log of the variance of the resultant windowed 
signal. (5) Low-pass 2nd order Butterworth filter with cut-off 
frequency of 5 Hz was applied to capture the slow, broad 
changes and remove the quick, jittery changes in log 
variance. (6) The log-variance curve maximum was located, 
and a 300 ms rectangular window was centered about this 
point. The audio of the original signal outside the rectangular 
window was discarded. Figure 2 illustrates part of this 
process by showing, for a sample breath sound, the filtered 
and scaled breath sound amplitude, filtered log variance of 
the signal, and the selected segment all on the same plot. This 
process was applied to every breath sound segment to detect 
the 300 ms segment within the upper 40% area of the flow 
signal; note that since we did not record the flow signal, we 
adopted this routine to ensure we extract a segment of sound 
within the upper 40% of the flow. 

Next, we calculated spectral and bispectral features from 
the original sound data within the 300 ms segments covering 
frequency ranges within 100 and 2600 Hz; the details of the 
features, specific sub-frequencies used, and equations used to 
calculate the features are described in [8]. Since we 
hypothesize that changes in upper airway anatomy affect the 
breath sounds, it is logical to assume that these changes might 
be detectable from the power spectra and bispectra of the 
breath sounds. We chose spectral features that characterize 
how the power is distributed over different frequency bands 
that are of interest and common in respiratory sounds 
analysis. The extracted spectral features were: signal power, 
relative signal power, spectral centroid, spectral bandwidth, 
spectral flatness, and crest factor. Spectral features, while 
appearing intuitively useful, may not contain enough 
desirable information for the classifier; this is because, like 
the power spectrum they are calculated from, they do not 
contain information on phase relations between different 
frequency components. Bispectral features, computed from 
the bispectra of the breath sounds, were included so that 
potential information within the phase relationships between 
frequency components might be considered. Bispectral 
features computed from the bispectrum may capture the 
tendency towards turbulent airflow in a narrower airway [9]. 
The extracted bispectral features are: bispectral invariant 
parameter, average magnitude, average power, normalized 
entropy, normalized squared entropy, sum of logarithmic 
amplitudes, first- and second-order moments of the 
logarithmic amplitudes, phase entropy, and median 
bifrequency. These features were calculated from the sound 

TABLE I.  NUMBER OF SUBJECTS WITH ANTHROPOMETRIC 

INFORMATION WITHIN EACH CLASSIFICATION GROUP. 

AHI Range # of 

Subjects 

# of 

Males 

Age* 

[years] 

BMI* 

[kg/m2] 

AHI ≤ 5 122 66 50 ± 13 31 ± 7 

10 ≤ AHI ≤ 25 69 44 56 ± 12 33 ± 6 

AHI ≥ 30 58 47 51 ± 11 39 ± 8 

Overall 249 157 52 ± 13 33 ± 8 

*Age and BMI (body-mass index) are reported as mean ± standard deviation. 

 
Figure 2.  The selected breath segment shown in the context of the 

filtered log variance and filtered signal 
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signals recorded in the 4 different recording configurations. 
Thus, a vector of all feature values was generated for each 
300 ms breath clip. For each subject, each feature value was 
averaged over all breaths of the same respiratory phase of the 
same recording configuration (e.g. nose breathing while 
supine). These average values were then used by the 
classifiers during the training and testing phases. 

C. Classifier Design 

A two-class “expert” classifier design is proposed which 
is intended to deal with classification of a very heterogeneous 
population, such as the breath sounds of people with and 
without OSA. Specifically, an “Expert-G1” classifier, which 
is trained to distinguish G1 from non-G1 (i.e. G2 and G3) 
subjects, and an “Expert-G3” classifier, which is similarly 
trained to distinguish G3 from non-G3 (i.e. G1 and G2) 
subjects, were developed and used to class all subjects in G1 
and G3 using a truth matrix. Each classifier uses our 
previously developed majority voting strategy [4], where 
each sound feature used by the classifier votes for the group 
whose median feature value is closest to the subject’s feature 
value. The outcome with the highest number of votes 
becomes the final outcome; a tie in votes is broken using the 
total sum of all absolute feature differences to group medians 
for each group. 

 The outcomes of Expert-G1 and Expert-G3 are combined 
to form the final classification of each subject, as shown in 
Table 2. When the classifier outcomes are not in conflict, the 
final classification is made according to the logical outcome. 
If, however, the classifier outcomes are in conflict, no 
classification of the subject is made. For example, the 
subjects that Expert-G1 claim as its own and that Expert-G3 
do not claim as its own are classed as G1; the same logic 
applies for the G3 outcome. In contrast, the subjects that both 
Expert-G1 and Expert-G3 claim as their own are not 
classified. Therefore, after examination by the expert 
classifiers, the final outcome for all G1 (non-OSA) and G3 
(OSA) subjects is either non-OSA, OSA, or unclassified. 

D. Classifier Training and Cross-Validation 

10-fold cross-validation was used, in tandem with a 
sequence of feature reduction techniques, to test the 
robustness of both the expert classifier and feature selection 
schemes; that is, the ability to generalize to new data. 
Subjects in groups G1, G2, and G3, representing a total of 
249 subjects, were randomly ordered and partitioned into 10 
equally sized folds. One fold, called the testing set, was set 
aside, while the remaining 90% of the dataset, called the 
training set, was used to select features, or “train” Expert-G1 

and Expert-G3 to classify their own kinds of subject. 

The training process finds a set of features for each 
classifier that allows the classifier to most accurately class its 
own grouping of subjects within the particular fold. For 
Expert-G1, the training set was split into G1 and non-G1 (G2 
+ G3) subjects, thereby forming the two groups that Expert-
G1 will be trained to distinguish between; this was likewise 
done for Expert-G3 by splitting the same training set into G3 
and non-G3 (G1 + G2) subjects. The following steps were 
applied, in parallel, to the sub-groupings of subjects 
associated with the Expert-G1 and Expert-G3 classifiers. (1) 
A two-tailed Welch’s t-test (P ≤ 0.01) was first applied to 
select the significantly different sound features; Welch’s t-
test was used to address the potential unequal feature 
variances between groups of subjects. (2) Next, the minimum 
redundancy maximum relevancy algorithm [4] was used to 
rank the significant features. (3) The top 30 ranked features 
were passed to a floating search algorithm [4] that was used 
to select 1 to 15 features that together resulted in the highest 
classification accuracy for the training set. Accuracy was 
defined as the sensitivity of true positive identification of 
each individual group. (4) Expert-G1 and Expert-G3 were 
then used to classify all G1 and G3 subjects in both the 
training and testing sets based on the group feature medians 
of the training set. (5) Finally, the outcomes of Expert-G1 
and Expert-G3 were combined as previously described for 
both the testing and training sets. These 5 steps were repeated 
for all 10 folds, thereby allowing all subjects to be omitted 
from the training set exactly once. In summary, the training 
process selects a set of features for each fold and classifier 
that can most accurately class the training subjects; the 
training process does not, however, select features to 
optimize the final accuracy that results from combining the 
Expert-G1 and Expert-G3 classifiers. 

III. RESULTS AND DISCUSSION 

A. Training Results 

For each fold, combining the classifications made by 
Expert-G1 and Expert-G3 of the training subjects results in a 
specific number of subjects assigned to each of the final 
outcomes of Table 2. The number of training subjects 
assigned to each final outcome varies between folds. Thus, 
the training results are reported in Table 3 as the mean and 
standard deviation of the number of training subjects to be 
assigned to each final outcome over all 10 folds. On average, 
87% ± 4% and 91% ± 4% of G1 and G3 subjects, 
respectively, could actually be classified; that is, the expert 
classifiers made a prediction that was logically consistent 
with one another. Of the subjects that could be classified, 
87% ± 9% and 81% ± 8% of G1 and G3 subjects, 
respectively, were correctly classified. 

B. Testing Results 

 Combining the classifications made by Expert-G1 and 
Expert-G3 of the testing subjects results in each G1 and G3 
subject being examined by the classifiers exactly once. Thus, 
while the training results are reported as averages, the testing 
results are reported as absolute numbers. How G1 and G3 
subjects were classified by combining the output of the 

TABLE II.  TRUTH MATRIX DESCRIBING HOW EXPERT 

CLASSIFIER OUTCOMES ARE COMBINED TO PRODUCE THE FINAL 

OUTCOME 

  Possible Outcomes 

Expert-

G1 

classifier 

(G1) vs. 

(G2+G3) 
(G1) (G2+G3) (G1) (G2+G3) 

Expert-

G3 

classifier 

(G3) vs. 

(G1+G2) 
(G1+G

2) 

(G3) (G3) (G1+G2) 

Final Outcome G1 G3 Not classified 
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expert classifiers, over all 10 testing folds, is shown in Table 
4. 75% and 79% of G1 and G3 subjects, respectively, could 
actually be classified. Of the subjects that could be classified, 
86% and 78% of G1 and G3 subjects, respectively, were 
correctly classified. 

C. Discussion 

The testing accuracies are approximately equal to the 
training accuracies, with only a ~10% drop in the number of 
G1 and G3 subjects that could be classified, compared to the 
training results. This indicates that the classification approach 
is both robust and generalizable to data that the classifiers 
have not seen before. 

Overall, in the dataset of a very heterogeneous 
population, such as breath sounds during wakefulness, the 
classic approaches of classification fail due to wide 
variability of the data and confounding factors; for example, 
not only does OSA affect the breath sound characteristics, 
but smoking, height, weight, age, etc. also affect the breath 
sounds; thus, usually the classic approach of classifications 
do not give a high accuracy. In contrast, we believe the 
expert classifier design, proposed in this paper, would result 
in reasonable accuracy in comparison to the classic 
approaches. 

IV. CONCLUSION 

This pilot study demonstrates a basic example of 

combining multiple, specifically-trained expert classifiers to 

determine a final outcome which is suitable for 

heterogeneous populations. We demonstrated that this 

classification technique, which uses the features of breath 

sounds recorded during wakefulness, has reasonable power 

to predict whether study subjects have severe OSA. The 

results are promising for three reasons. First, the majority 

(76%) of non-OSA and OSA testing subjects could be 

classified. Second, the testing subjects that could be 

classified were classified with favorable sensitivity (78%) 

and specificity (86%). Third, and finally, the consistent 

sensitivity and specificity between training and testing 

phases indicate the generalizability of the classification 

approach to data that were not part of the initial classifier 

training process. This indicates that our classification 

approach is reasonably generalizable to subjects that the 

classifiers have never encountered before. This 

generalizability supports our goal of developing the Awake-

OSA method into a fast, non-invasive, painless, and 

economical method of pre-screening for OSA in a doctor’s 

office. This would allow physicians to better determine 

which subjects are in need of the detailed information 

provided by overnight PSG. From both a subject and cost 

perspective, the potential benefits of Awake-OSA are 

preferable due to the uncomfortable, expensive, and time-

consuming nature of overnight polysomnography. 

A. Future Work 

The next immediate step is to augment the decision matrix 

(Table 2) to take into account additional combinations of 

expert classifier outcomes. This would allow more subjects 

to have a final classification assigned to them. For example, 

when the outcomes of the individual expert classifiers are in 

conflict, the proportion of votes between classifiers could be 

compared to resolve the conflict. 

Next, to better confirm the practical viability of 

combining multiple expert classifiers to determine the final 

predicted outcome, an in-depth analysis of how G2 

(moderate-OSA) subjects are classed is required. Finally, 

subjects with AHI indices that excluded them from each of 

the three groups in this study (G1, G2, G3) should also be 

classed to see whether they are placed in one of their 

neighboring groups. 
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TABLE III.  MEAN ASSIGNMENT COUNT ± STANDARD DEVIATION 

OF TRAINING SUBJECTS OVER ALL 10 FOLDS 

  Predicted Class 

# of Not 

Classified 

G1 (non-

OSA) 

G3 (OSA) 

True 

Class 

G1 (non-OSA) 16.0 ± 5.3 81.3 ± 5.3 12.5 ± 2.8 

G3 (OSA) 5.2 ± 2.6 9.1 ± 1.5 37.9 ± 2.6 

TABLE IV.  ABSOLUTE ASSIGNMENT COUNT OF TESTING SUBJECTS 

OVER ALL 10 FOLDS 

  Predicted Class 

# Not Classified G1 (non-

OSA) 

G3 (OSA) 

True 

Class 

G1 (non-OSA) 31 79 12 

G3 (OSA) 12 10 36 
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