
  

 

Abstract— There are many applications in biomedical 

research where detection and enumeration of circulating cells 

(CCs) is important.  Existing techniques involve drawing and 

enriching blood samples and analyzing them ex vivo. More 

recently, small animal “in vivo flow cytometry” (IVFC) 

techniques have been developed, where fluorescently-labeled 

cells flowing through small arterioles (ear, retina) are detected 

and counted. We recently developed a new high-sensitivity 

IVFC technique termed “Computer Vision(CV)-IVFC”. Here, 

large circulating blood volumes were monitored in the ears of 

mice with a wide-field video-rate near-infrared (NIR) 

fluorescent camera. Cells were labeled with a membrane dye 

and were detected and tracked in noisy image sequences. This 

technique allowed enumeration of CCs in vivo with overall 

sensitivity better than 10 cells/mL. However, an ongoing area of 

interest in our lab is optimization of the system for lower-

contrast imaging conditions, e.g. when CCs are weakly labeled, 

or in the case higher background autofluorescence with visible 

dyes. To this end, we developed a new optical flow phantom 

model to control autofluorescence intensity and physical 

structure to better mimic conditions observed in mice. We 

acquired image sequences from a series of phantoms with 

varying levels of contrast and analyzed the distribution of pixel 

intensities, and showed that we could generate similar 

conditions to those in vivo.  We characterized the performance 

of our CV-IVFC algorithm in these phantoms with respect to 

sensitivity and false-alarm rates. Use of this phantom model in 

optimization of the instrument and algorithm under lower-

contrast conditions is the subject of ongoing work in our lab. 

I. INTRODUCTION 

Enumeration of circulating cells in the blood stream is 
applicable to many areas of preclinical biomedical research 
such a cancer metastasis, stem cell therapies, and 
immunological responses [1, 2].  Detecting and counting 
circulating cells in small animals is normally performed by 
extraction and enriching peripheral blood (PB) and analysis 
via conventional flow cytometry or hemocytometry. 
However, it is well understood that handling of cell samples 
can affect cell viability and count accuracy. Moreover, the 
small sampling volume and frequency (~100 μL  once per 
day in “survival” mouse studies) means that rare cells may 
escape detection entirely, and that study of cell circulation 
kinetics over short time spans is extremely difficult. To 
address these limitations, optical in vivo flow cytometry 
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(IVFC) has been developed, which allows noninvasive, 
continuous sensing of CCs in situ. A number of optical 
designs have been reported in the literature.  For example, in 
fluorescence microscopic IVFC a single arteriole in the 
mouse ear [3] or retina [4] is illuminated with a laser, and 
transient “spikes” are detected as labeled CCs pass through 
the field of view. However, since small arterioles with small 
flow PB rates are interrogated (~1 μL), very rare CCs (at 
concentrations below about 10

3
 cells /mL) may escape 

detection entirely [5]. 
To improve on this accuracy, we recently developed and 

reported a new high-sensitivity IVFC method termed 
“computer vision-IVFC” (CV-IVFC) [6]. The underlying 
strategy of this technique was to increase the sensitivity of 
IVFC by sampling larger circulating blood volumes 
simultaneously. To accomplish this, we performed video-rate 
fluorescence imaging over a relatively large (5 x 5 mm

2
) field 

of view in the mouse ear, wherein 3-4 artery-vein pairs were 
imaged.  The PB flow rate in this area was on the order of 10-
20 μL/min, yielding at least an order of magnitude 
improvement in detection sensitivity.  However, image of the 
large field of view with rare CCs yielded two major 
challenges: first, this necessitated high illumination 
intensities and detector gains, resulting in relatively noisy 
image sequences with significant autofluorescence 
background. Second, the large field of view meant that 
individual CCs were on the order of 1-5 pixels with intensity 
comparable to background. We developed a novel CV 
algorithm to detect, track and count moving CCs from image 
sequences.  Briefly, this algorithm used two steps: in the first, 
candidate CCs were identified, and in the second these were 
dynamically analyzed in image sequences to yield “cell 
tracks”. When tested in vivo with circulating multiple 
myeloma (MM) cells labeled with a NIR membrane dye, we 
showed that our CV-IFVC instrument could detect CCs at 
concentrations lower than 10 cells/mL. 

However, an ongoing area of interest in our lab is the use 
of our CV-IVFC instrument in conditions with lower-
contrast.  For example, use of cells labeled with GFP would 
be extremely useful for many applications (due to the 
ubiquity of GFP labeled cell lines), however, it is known that 
use of green (versus NIR) laser light will increase tissue 
autofluorescence and potentially degrade the performance of 
our system.  Likewise, anti-body targeted injected contrast 
agents are extremely attractive for study of CCs in vivo, but 
these are likely to yield worse contrast than membrane-bound 
labels. Therefore, the motivation for this work was to study 
and optimize CV-IVFC performance with lower contrast 
between the CCs and background tissue.  In this paper, we 
first briefly review the instrument and algorithms used in 
CV-IVFC. Second, we describe our ongoing efforts to 
develop optical phantoms to allow characterization of the 
instrument in controlled conditions with varying levels of 
background contrast and structure. We analyzed image 
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sequences obtained with these phantoms and showed that we 
were able to closely replicate conditions observed in vivo. We 
then evaluated the performance of the CV-IVFC algorithm 
with respect to sensitivity and false alarm rate (FAR).  Use of 
these phantoms in the optimization of our system is the 
subject of ongoing work in our lab. 

II. METHODS AND MATERIALS 

A. CV-IVFC Overview 

A schematic and photograph of the system are shown in 
Figs. 1a,b respectively.  A sample (phantom or mouse ear) 
was placed on a translation stage as shown in fig. 1c and 
then trans-illuminated with a 660 nm diode laser to excite a 
near infrared dye chosen to take advantage of the relatively 
low tissue autofluorescence and light attenuation. A 660 nm 
“clean-up” filter eliminated any stray out of band light from 
the diode-pumped solid state laser, and then the beam was 
expanded using a plano-convex lens pair.  The beam at the 
sample was approximately Gaussian with 5 mm

 
waist with 

average intensity of 10 mW/cm
2
.  Light was collected from 

the sample with a 2X objective and 1X tube lens. 
Fluorescence image sequences were collected with a 710 nm 
filter in place (white light images were collected by 
removing this filter).  Images were recorded with a 14-bit 
electron multiplied charge coupled device (EMCCD) 
camera.  The gain on the EMCCD was used to amplify the 
relatively low fluorescence emission intensity of cells in the 
large field of view but also resulted in relatively high 
imaging noise and background intensity. 

We developed a novel CV algorithm to automatically 

detect and track cells from the resulting noisy fluorescence 

image sequences. The flow chart for this algorithm is shown 

in figure 1d. Briefly, this algorithm used two major analysis 

steps. In step one, pixels or groups of pixels exceeding a set 

threshold were identified as “cell candidates”. 14-bit 

fluorescence images (figs. 2a-c) were converted to a binary 

image sequence by choosing a threshold T. Pixels or pixel 

groups exceeding this threshold were set to ‘1’, and pixels 

below this threshold were set to zero (figs. 2d-f).  The choice 

of threshold was critical and was chosen to be a percentile of 

all pixel intensities in an image sequence; we determined 

heuristically that threshold values in the range of 99.93 to 

99.99 of the maximum worked well in vivo. 

In step two, the dynamic behavior of cell candidates 

between successive image frames was analyzed so that cells 

could be merged into tracks.  A full description is found in 

[6], but in brief, when cell candidates were identified, spatial 

regions related to the previously known speed and direction 

of the cell were searched in subsequent image frames. These 

were merged into tracks. Since cells would periodically 

disappear in image frames (due to variations in intensity), 

images were searched for up to 15 frames (i.e. 0.8s) 

following the last known location of the cell candidates.  

Cell candidates which appeared in individual frames only 

were discarded, and cell candidates which formed tracks 

were recorded by the algorithm (fig 2g-i).  In this way, the 

CV-IVFC instrument and algorithm could detect number, 

trajectory and speed of CCs which appeared in the field of 

view.  The code took 2.5 minutes to execute per 1,000 

frames in MATLAB on a 64-bit personal computer with 16 

GB of RAM. 

 

 

 

Figure 1. a) Schematic and b) photograph of CV-IVFC system. M, mirror; Lin. Pol, linear polarizer; Obj, 2X objective.  c) Photograph of the stage with a 
mouse ear illuminated for in vivo experiments.  d) Computer vision algorithm flow chart. 

Figure 2. Example CV-IVFC operation in vivo (a-c) fluorescence image 
acquired at 3 times separated by 0.5s (d-f) binary thresholded images (after 

algorithm Step 1) (g-i) dynamic cell tracks determined in step 2, overlaid on 

white light images of ear vasculature. (j) Histogram of background and cell 
pixel intensities in an image sequence after background subtraction.  (k) 

Performance of the CV-IVFC algorithm with respect to sensitivity and FAR 

for varying thresholds in Step-1. 
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The performance of the algorithm could be adjusted using 

a number of parameters related to dynamic analysis (Step-2) 

and threshold level (Step-1).  An example histogram of the 

pixel values for background intensity (after mean 

subtraction) and cell intensity values for an image sequence 

are shown in figure 2j.  Selection of the threshold value in 

Step-1 impacted the overall performance with respect to 

sensitivity and false alarm rate (FAR) as described in section 

D below. For example, selection of a higher threshold 

resulted in a lower FAR, but reduced sensitivity (fig 2k). 

B. Performance of CV-IVFC with Varying Contrast 

We are interested in characterizing and optimizing of the 

CV-IVFC instrument and algorithm in imaging conditions 

with varying contrast.  For example, in conditions with less-

bright fluorophore labeling the red histogram in fig 2j (cells) 

is expected to shift to the left, whereas higher background 

autofluorescence is expected to increase the width of the 

blue histogram (background). The impact of this on the 

instrument performance (fig 2k) is not well understood, but 

we expect to degrade performance. In the current work, we 

developed a phantom model to closely mimic in vivo 

imaging conditions, so that we could test and characterize 

the instrument performance under controlled conditions. 

Optimizing the algorithm to improve performance under 

these conditions is the subject of ongoing work. 

C. Phantom Preparation 

Tissue-mimicking phantoms were made with polyester 
resin, TiO2, and India Ink to simulate approximate optical 
properties of tissue at 700 nm with reduced scattering 
coefficient μ’s = 15 cm

-1
 and absorption coefficient μa = 0.1 

cm
-1

 [7]. These were placed in a mold to mimic the 
approximate size of a mouse ear (20 mm diameter, 2 mm 
thick), with a strand of Tygon tubing inserted to simulate a 
large blood vessel (fig 3). Inspection of in vivo image 
sequences (fig 2a-c) showed that sebaceous glands in the ear 
of the mouse appear as discrete point autofluorescent objects, 
specifically, an average of 65 sebaceous glands were present 
over a set of 12 mice that were tested previously. To replicate 
this in phantoms, 6 μm diameter fluorescent microspheres 
were added to the resin before hardening;   either 0, 850 or 
1,700 spheres/mL were added to a volume of 10 mL of 
phantom material.  In order to mimic the background 
autofluorescence, 0.4 μM of Alexafluor-680 dye was added 
to the resin.  To simulate blood flow, a solution of PBS and 
the microspheres, representing fluorescent “cells” matching 
the spectra of Cyanine 5.5 and Alexafluor-680 dyes, were 
pumped through the tube via a syringe pump at a flow speed 
of 1.7 mm/s.  Tests were run with microspheres at 
concentrations of 2 x 10

3
 spheres/mL, EMCCD gain of 10-30 

(of a maximum of 300), exposure time 0.05s, frame rate of 19 

frames/s, and a total of 1,000 frames per sequence.  
Measurements were repeated continuously so that data was 
collected for 20 minutes for each phantom. 

D. Performance Metrics 

Background and sphere intensities from image sequences 
for each phantom were analyzed. Histograms of pixel 
intensities were plotted after pixel-by-pixel background mean 
subtraction. Microspheres were tracked with our CV-IVFC 
algorithm as we have described previously, and sensitivity 
and FAR performance was quantified for each phantom.  
Here, sensitivity was calculated as TP/(TP + FN), here TP 
were the true positives count (determined by a human 
operator) and FN were the false negative counts, i.e. cells 
missed by the algorithm.  The human operator manually 
counted the number and arrival time of spheres which took 
approximately 45 minutes per 20 minutes of phantom data.  
The operator performed manual counting before running the 
CV-IVFC code to minimize potential bias.  Finally, the 
operator verified that the counts reported by the algorithm 
corresponded to spheres which took 30 minutes per data set.  
The FAR was calculated as the number of false positives (FP) 
incorrectly detected by the algorithm per minute. The 
performance was recomputed for a range of threshold 
percentages in Step-1 of the CV algorithm, specifically, 
99.93 to 99.99 of maximum. 

III. RESULTS 

An example set of fluorescence images for a phantom 

with high contrast (no embedded spheres or AF-680 dye 

added) and low contrast (1,700 spheres/mL and 0.4 μM AF-

680 added) are shown in figs. 4a-c and 4j-l, respectively.  By 

inspection, addition of the contrast materials resulted in an 

image sequence that qualitatively better matched that 

observed in vivo. The effect of this contrast on Step-1 (cell 

candidate identification) is clearly observed in figs 4d-f and 

4m-o, respectively; a significantly higher number of false-

candidates are indicated. However, the CV algorithm was 

successful in identifying the moving microspheres for both 

cases as shown in figs 4g-i and 4p-r.  

To better quantify this effect, we computed the pixel-

intensity histograms and algorithm tracking performance 

(sensitivity vs. FAR) for all of the phantoms we tested.  

Example data is shown in figure 5.  Intensity histograms for 

a high-contrast, medium contrast and low-contrast phantom 

are shown in figs 5a-c, respectively.  For the high-contrast 

phantom, the background mean and standard deviation were 

0 and 103 counts while the spheres had a mean of 12,583 

counts and standard deviation of 4,496 counts (fig 5a).  For 

the low-contrast phantom the background intensity had a 

mean of 0 and standard deviation of 763 counts and sphere 

intensities with a mean of 5,500 and standard deviation of 

1,462 counts (5c).  Comparison of the fig 2j verifies that the 

low-contrast phantom closely approximated what was 

observed in mice in vivo. 

Last, the performance of the CV-IVFC algorithm with 

respect to sensitivity and FAR for two example phantoms 

are shown in fig 4d, along with corresponding in vivo data. 

As such the overall system performance observed in the low-

contrast phantom more similarly replicated the in vivo 

 
Figure 3. a) Photograph of an example ear-mimicking phantom with a 
dotted line showing the Tygon tubing position. B) Photograph of an 

example the mouse ear for comparison. 
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performance of the algorithm. For example, for one 

operating threshold (99.96
th
 percentile), the low contrast 

phantom had sensitivity of 0.95 and FAR of 0.84 

spheres/min whereas the in vivo performance had a 

sensitivity of 0.81 and FAR of 0.24 cells/min.  

IV. DISCUSSION AND CONCLUSION 

We previously reported development and validation of a 

novel high-sensitivity computer vision system and algorithm 

for detecting, tracking and counting rare CCs at 

concentrations below 10 cells / mL in vivo.  In this work, we 

were successful in developing a phantom model that closely 

replicated both the qualitative (appearance) and quantitative 

(intensity histogram) properties of previously measured in 

vivo data.  The sensitivity was higher for phantoms than in 

vivo due to the spheres being twice as bright as labeled MM 

cells [8].  The FAR was higher in the phantom results 

compared to in vivo data due to a higher number of 

stationary noisy pixels being merged as cell tracks. As noted, 

the fluorescent labeling (contrast) of MM cells in our 

previous in vivo studies was relatively “bright” compared to 

that expected, e.g. with constitutively expressed fluorescent 

proteins or receptor targeted fluorescent dyes. Ongoing work 

in the lab incorporates these low contrast phantoms with 

spheres of lower intensities to mimic different cell labeling 

techniques. We expect that the phantom models developed 

here will allow us to test and refine optimization strategies 

for lower-contrast imaging conditions, for example, by 

modifying the dynamic tracking analysis in Step-2 of the CV 

algorithm. These phantoms provide a platform to test new 

cell labeling techniques ex-vivo with confidence before 

proceeding to costly and time consuming animal studies.  

Robust operation with arbitrary cell-labeling strategies is 

expected to increase the overall utility CV-IVFC in the study 

of rare CCs for many pre-clinical research applications.   
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Figure 4. Example fluorescence image sequences for a high-contrast (a-c) 
and low-contrast (j-l) phantom, respectively, with frames separated by 0.25 

s. (d-f, m-o) corresponding thresholded image sequences are shown, 

indicted microsphere candidates identified in Step-1 of the algorithm.  (g-i, 
p-r) extracted tracks and white-light overlay images for the high- and low-

contrast phantoms, respectively.  

 

 
Figure 5. Pixel-intensity histograms for example a) high, b) medium, and c) 
low-contrast phantoms. (d) Sensitivity versus FAR performance for an 

example high- and low-contrast phantom, as well as in vivo data. 

d) 
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