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Abstract— Cancer growth is associated with angiogenic pro-
cesses in many types of cancer. Several imaging strategies
have therefore been developed that target angiogenesis as a
marker for cancer localization. To this end, intravascular and
extravascular tissue perfusion is typically assessed by dynamic
contrast enhanced (DCE) ultrasound (US) and MRI. All the
proposed strategies, however, overlook important changes in
the microvascular architecture that result from angiogenic
processes. To overcome these limitations, we have recently intro-
duced a new imaging strategy that analyzes the intravascular
dispersion kinetics of contrast agents spreading through the
microvasculature. Contrast dispersion is mainly determined by
microvascular multi-path trajectories, reflecting the underlying
microvascular architecture. This paper reviews the results
obtained for prostate cancer localization by US and MRI
dispersion imaging, also presenting the latest new developments
and future perspectives.

I. INTRODUCTION

In the last decades, our knowledge on the physiologi-
cal processes underlying cancer formation and growth has
tremendously expanded. This expansion has also been par-
alleled by improved imaging technology, exploiting the new
available physiological insight to achieve better cancer de-
tection. In this context, the established link between cancer
growth and neoangiogenesis has played a fundamental role.

Our knowledge on the function of angiogenesis in cancer
growth dates back to the work by Folkman [1]. In order to
grow beyond the size of few millimeters, cancer requires
the formation of new microvessels carrying nutrients [1],
[2]. The resulting microvascular network can therefore be
considered as a marker for the presence of those angiogenic
processes associated with cancer growth. As a result, an-
giogenesis imaging has been introduced as a valid option
for cancer detection. In particular, diverse imaging strategies
have been developed probing different features characterizing
the microvasculature associated with cancer [3].

Different from a regular microvascular architecture, con-
sisting of an organized structure of bifurcating microvessels,
an angiogenic microvascular architecture is characterized
by a disorganized assembly of irregular, fragile, and leaky
microvessels, showing irregular branching and arterovenous
shunts, as well as a high degree of tortuosity [1], [2], [3].

A number of imaging methods have been designed with
the aim of detecting those features characterizing angiogenic
microvasculature [3]. Assuming a link between angiogenesis
and increased perfusion, most methods are based on the
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assessment of intravascular perfusion, either by ultrasound
(US) Doppler techniques or by contrast-enhanced imaging
[4], [5], [6]. When extravascular agents are employed, the
focus shifts from intravascular perfusion to tissue perfusion,
with the aim of assessing extravascular leakage into the
interstitium due to increased microvascular permeability [7].
In general, the link between angiogenesis and perfusion is
rather complex. While increased perfusion is expected due
to the formation of new microvessels and the presence of
arterovenous shunts, this can be counterbalanced by the small
irregular size of the formed microvessels, together with an
increase in interstitial pressure due to leakage, resulting all
together in increased peripheral flow resistance [8].

While perfusion is affected by opposing factors, the
microvascular architecture remains a major discriminating
factor between benign and malignant tissue. Therefore, we
have recently introduced a new imaging approach to charac-
terize the microvascular architecture as a marker for cancer
angiogenic processes. Although clinical imaging technology
does not permit imaging single microvessels, the proposed
method infers the underlying microvascular architecture from
the intravascular dispersion kinetics of a contrast agent,
estimated by analysis of the agent concentration in time [9]
and, more recently, also in space [10].

The proposed method has first been validated for prostate
cancer (PCa) localization. In the United States, PCa is the
form of cancer with the highest incidence (27%) and second
mortality (10%) in men [11]. Despite the availability of
effective focal therapies, their timely and efficient use is
hampered by a lack of reliable imaging methods for early
PCa localization. For the same reason, diagnosis still relies
on multiple systematic biopsies.

Prostate imaging in clinical routine is typically performed
by US, which is also used for biopsy guidance [12]. However,
aiming at PCa localization, in the past years the use of
multiparametric (mp)MRI, combining T2, dynamic contrast
enhanced (DCE), and diffusion weighted MRI, is gaining
attention [13]. DCE-US has also been tested for PCa local-
ization by perfusion quantification [5]. Therefore, we have
employed both DCE-US and DCE-MRI for implementing
and testing dispersion imaging in the context of PCa lo-
calization. These technologies also give the opportunity to
evaluate dispersion imaging by use of intravascular (DCE-
US) and extravascular (DCE-MRI) contrast agents.

II. METHODOLOGY

A. Intravascular dispersion

The kinetics of an intravascular contrast agent flowing
through a microvascular network can be described as a Brow-
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nian process and modeled with the convective dispersion
equation [14]. In one dimension, z, the convective dispersion
equation is given as

dCt(z,t)
dt

= D
d2Ct(z,t)

dz2 − v
dCt(z,t)

dz
, (1)

with Ct(z, t) being the contrast-agent concentration in tissue
at position z and time t, v its velocity, and D the dispersion
coefficient. In the microvasculature, the dispersion coefficient
D is mainly determined by transit time distribution due
to multipath trajectories of the contrast agent through the
microvascular network [14], [15]. Therefore, it reflects the
microvascular architecture [9].

A solution of Eq. (1), assuming a fast injection of the
contrast agent as a bolus, is given by the Local Density
Random Walk (LDRW) model [14]. More recently, in order
to define a local dispersion parameter, i.e., independent of
the history of the contrast bolus between the injection and
detection site, a modified version of the LDRW model has
been proposed [9]. Its formulation is given as

Ct(t) = vpα
√

κ
2π (t − t0)

e
−κ(t−t0−μ)2

2(t−t0) . (2)

with t0 being the theoretical injection time (assuming the
indicator kinetics to be constant along the entire path between
injection and detection site), v p the fractional plasma volume
in the investigated tissue sample (voxel), v pα the time inte-
gral of Ct (t), μ the mean transit time of the indicator between
injection and detection site, and κ the estimated intravascular
dispersion parameter, κ = v2/D, which represents the local
ratio between contrast convection (squared velocity v 2) and
dispersion (dispersion coefficient D).

Equation (2) is a solution of the convective dispersion
equation assuming a Gaussian distribution of the contrast
bolus in space prior to its passage through the detection
site [9]. It represents the contrast-agent time-concentration
curve (TCC) at the detection site; therefore, by fitting Eq. (2)
to TCCs measured at each voxel, a map of the dispersion
parameter κ can be generated.

B. Contrast ultrasound dispersion imaging

Gas microbubbles stabilized with a biocompatible shell
are the employed contrast agents in DCE-US. To validate
contrast ultrasound dispersion imaging (CUDI) for PCa
detection, a 2.4-mL bolus of SonoVue� (Bracco) con-
trast agent is injected. Due to their size, comparable to
blood red cells, SonoVue� microbubbles flow through the
smallest microvessel while staying in the blood pool [16].
Both an iU22 (Philips Healthcare) and a UltraView 800
(BK medical) ultrasound scanner were employed for the
measurement in contrast-specific imaging at low mechani-
cal index. Contrast-specific imaging exploits the nonlinear
microbubble backscatter as compared to that from (linear)
tissue in order to enhance specific microbubble detection
[17]. Assessment of absolute TCCs by DCE-US is usually
unfeasible, and time-intensity curves (TICs) recorded at each

pixel are employed for the following dispersion analysis after
linearization [18].

A first option consists of fitting Eq. (2) to the measured
(linearized) TICs in order to generate a map of the dispersion
parameter κ [9]. Unfortunately, due to the poor signal-
to-noise ratio (SNR) in measured TICs and the presence
of recirculation, model fitting remains a critical procedure
that is time demanding and prone to errors. An alternative
approach was therefore proposed that provides an indirect
estimation of dispersion by full spatiotemporal analysis [10].
This approach was originally based on the intuition that low
dispersion results in neighbor TICs showing higher similarity
with each other. To the limit, in the absence of dispersion,
neighbor TICs would result identical.

Implementation of the similarity analysis requires the defi-
nition of both a strategy for TIC comparison and a similarity
measure. Each TIC was compared with the neighbor TICs
measured from an annular ring whose size provided the
best balance between diagnostic resolution and robustness
to noise, while also accounting for the scanner resolution
[10]. The first similarity measure, referred to as coherence, ρ ,
consisted of the correlation coefficient of the TIC amplitude
spectra in a frequency range representative of the contrast
kinetics [10]. By neglecting the phase information, the TIC
arrival time cannot alter the TIC shape similarity. Later on,
time windowing and speckle regularization was introduced
to focus on the most informative TIC time interval and
to prevent anisotropic, depth-dependent speckle size from
influencing the spatiotemporal analysis [19].

Based on the implemented time-windowing strategy, de-
tection of the TIC appearance time was also available and
could be used to realign the measured TICs prior to the
similarity analysis. This way, the phase information could
be added to the similarity measure without being affected by
TIC appearance time. The correlation coefficient, r, of the
realigned TICs was therefore introduced as new similarity
measure [20]. Moreover, an analytical link between the dis-
persion parameter κ and the correlation coefficient r could be
established, evidencing a monotonic relation and providing a
solid analytical and physical basis for the proposed similarity
analysis [20].

Given the link between linear similarity measures, such
as coherence and correlation, and dispersion kinetics, the
statistical dependency between neighbor TICs, accounting
for nonlinear similarity, was also investigated. In particular,
the mutual information between IDCs was explored as a
possible similarity measure [21]. Like for linear similarity,
also mutual information is estimated between a central pixel
and its neighbors within a predefined kernel [21]. Time
windowing was also implemented to extract the contrast
washin phase, showing higher SNR and stationarity.

C. Magnetic resonance dispersion imaging

Assessment of intravascular dispersion by CUDI is facili-
tated by the use of intravascular agents. Instead, when using
DCE MRI, the adopted gadolinium-based contrast agents
are made of small molecules that leak outside the blood
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pool into the extravascular extracellular space (interstitium),
complicating the assessment of the intravascular dispersion.
New dispersion models are therefore needed that take ex-
travasation into account.

MRI acquisition consisted of a multislice spoiled gradient
recalled sequence following the intravenous injection of a
0.1-mmol/Kg bolus of Gadovist� (Bayer). All scans were
performed with a 1.5-T MRI scanner (Magnetom Avanto,
Siemens) and an endorectal coil. Voxel size and time res-
olution were 1.67x1.67x4 mm3 and 3.1 ms, respectively;
this spatiotemporal resolution is considerably inferior to that
by DCE-US. Pre-contrast T1 maps were estimated by an
inversion recovery sequence to obtain the absolute contrast
concentration according to [22], yielding an absolute TCC
for each voxel.

For an extravascular agent, the measured concentration in
tissue, Ct(t), results from the contribution of the intravascular
concentration in blood plasma, C p(t), and the extravascular
concentration in the interstitium, Ce(t), given as

Ct(t) = vpCp(t)+ veCe(t), (3)

with ve being the extravascular fractional volume. Based on
the established compartmental Tofts model [7], assuming the
interstitium to be represented by a single compartment and
the contribution of Cp(t) to Ct(t) to be negligible (vp � ve),
the extravasation kinetics can be represented as

Ct(t) = KtransCp(t)∗ e−kept , (4)

with * convolution symbol, and with K trans and kep =
Ktrans/ve representing the volume transfer constant and the
back flow rate, respectively [7]. Both Ktrans and kep are com-
monly used as indicators of vascular leakage; however, their
estimation requires the intravascular concentration, C p(t), to
be known. Cp(t) is typically estimated by measuring a so
called arterial input function (AIF) from the closest artery
feeding the investigated tissue. This tedious operation is
prone to errors due to inaccurate quantification and modeling,
assuming instantaneous mixing of the AIF in the intravascu-
lar compartment.

Based on Eq. (1), the intravascular plasma concentration
can be modeled by Eq. (2). Therefore, under the assumption
of a slow extravascular kinetics as compared to the intravas-
cular kinetics (adiabatic assumption [23]), C p(t) in Eq. (4)
can be represented by the model in Eq. (2), yielding the
following dispersion model for extravascular agents [24]

Ct(t) = αKtrans
√

κ
2π (t − t0)

e
−κ(t−t0−μ)2

2(t−t0) ∗ e−kept . (5)

Fitting Eq. (5) to TCCs measured at each voxel permits
the simultaneous estimation of a dispersion map, expressed
by κ , and a leakage map, expressed by kep. Focusing on the
estimation of the novel parameter κ , this method is referred
to as magnetic resonance dispersion imaging (MRDI). K trans

cannot be estimated due to its multiplication by the scaling
factor α .

D. Validation

Due to the limits of available imaging methods for PCa
localization, the only reference for validation consists of the
histology results after radical prostatectomy. Slices of 4-mm
thickness were marked by the pathologist for the presence
of cancer. A number of pilot studies was carried out where
patients referred for radical prostatectomy were first analyzed
by either CUDI, or MRDI, or both. Validation was then
performed by overlaying two regions on the resulting para-
metric maps that represented, according to the corresponding
histology slice, benign and malignant tissue, respectively.
Voxel classification for PCa detection was then evaluated
in terms of area under the resulting Receiver Operating
Characteristic (ROC) curve, sensitivity, and specificity. The
proposed dispersion maps were also compared with standard
maps based on perfusion or leakage parameters.

MRDI and CUDI data were collected at the Academic
Medical Center University Hospital (Amsterdam, Nether-
lands). CUDI data were also collected at the Jeroen Bosch
Hospital, (’s-Hertogenbosch, Netherlands). All these studies
were approved by the local Ethical Boards and written
consent was collected from all patients.

III. RESULTS

Table I presents an overview of the available results is
terms of sensitivity, specificity and ROC curve area. The
most extended CUDI validation consists of a multicenter
study comprising 43 measurements in 24 patients examined
at the AMC (19) and the Jeroen Bosch Hospital (5) [25].
Both correlation and coherence maps outperformed classi-
fication by standard perfusion parameters by over 10% in
sensitivity, specificity, and ROC curve area. Due to poor SNR
and unreliable fitting, dispersion maps by the parameter κ are
less accurate [20]. Instead, nonlinear similarity maps by mu-
tual information , I, show promising results based on a first
pilot study with 9 patients scanned at the AMC University
Hospital [21]. MRDI has successfully been validated with 15
patients [24]. Again, classification by the proposed dispersion
map outperformed that by standard leakage parameters k ep

and Ktrans by over 10%.
TABLE I

CLASSIFICATION RESULTS.

Dispersion parameter Sens (%) Spec (%) ROC
r (43 CUDI planes, 24 patients [25]) 77.9 82.4 0.88
ρ (same dataset as above∗) 77.3 81.3 0.87
κ (12 CUDI planes, 8 patients [20]) 66.6 68.7 0.70
I (21 CUDI planes, 9 patients [21]) 81 87 0.92
κ (90 MRDI slices, 15 patients [24]) 85.0 90.2 0.94

∗ Unpublished results.

Fig. 1 shows the same prostate investigated by CUDI
and MRDI, and compared with the corresponding histol-
ogy. Approximately corresponding US, MRI, and histology
planes/slices are shown. The estimated κ values by CUDI
and MRDI are 0.37± 0.08 s−1 (1193 pixels) and 0.05±
0.01 s−1 (26 voxels) for benign tissue and 0.68± 0.10 s−1

(1115 pixels) and 1.01±0.77 s−1 (21 voxels) for malignant
tissue.

4270



Fig. 1. Parametric dispersion maps by CUDI and MRDI based on different
methods with corresponding histology result. Red color represents cancer.

IV. DISCUSSION AND CONCLUSIONS

Dispersion imaging has recently been proposed as a new
promising option for imaging angiogenesis and, therefore, for
cancer localization. Here the progress with CUDI and MRDI
for PCa localization is reported and evaluated. The results
confirm the potential of these methods, although validation
with larger datasets is necessary prior to clinical adoption.

DCE US, making use of intravascular agents, facilitates
the implementation of the method by simpler models. On
the other hand, DCE MRI, making use of extravascular
agents, permits the simultaneous assessment of the two main
markers for cancer microvasculature: microvascular leakage
and architecture.

Results by CUDI and MRDI are proposed for the first
time in the same patient. The obtained dispersion values are
in line, with the dispersion parameter κ = v2/D increasing in
the presence of cancer. This result, confirmed in all studies,
can be explained by an increase in tortuosity, effectively
limiting the dispersion kinetics represented by the dispersion
coefficient D.

All techniques have so far been validated for PCa local-
ization vs. the corresponding histological results. However,
while the histology evaluates the cellular differentiation,
dispersion imaging characterizes the microvascular architec-
ture, whose ground truth should be produced by immuno-
histological analysis. A preliminary study was proposed in
mouse xenograft models showing the ability of CUDI to
differentiate between microvascular architectures [26], but
more extended validation is necessary to assess the link
between the estimated dispersion parameters and the main
geometrical features of the microvasculature.
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