
  

 

Abstract—The rapid advancements of biomedical 

instrumentation and healthcare technology have resulted in 

data-rich environments in hospitals. However, the meaningful 

information extracted from rich datasets is limited. There is a 

dire need to go beyond current medical practices, and develop 

data-driven methods and tools that will enable and help (i) the 

handling of big data, (ii) the extraction of data-driven 

knowledge, (iii) the exploitation of acquired knowledge for 

optimizing clinical decisions. This present study focuses on the 

prediction of mortality rates in Intensive Care Units (ICU) 

using patient-specific healthcare recordings. It is worth 

mentioning that postsurgical monitoring in ICU leads to 

massive datasets with unique properties, e.g., variable 

heterogeneity, patient heterogeneity, and time asyncronization. 

To cope with the challenges in ICU datasets, we developed the 

postsurgical decision support system with a series of analytical 

tools, including data categorization, data pre-processing, 

feature extraction, feature selection, and predictive modeling. 

Experimental results show that the proposed data-driven 

methodology outperforms traditional approaches and yields 

better results based on the evaluation of real-world ICU data 

from 4000 subjects in the database. This research shows great 

potentials for the use of data-driven analytics to improve the 

quality of healthcare services.  

I. INTRODUCTION 

US healthcare spending is approximately 17% of GDP 
(i.e., $2.5 trillion), and will continue the historical upward 
trend, reaching 19.5% by 2017 [1]. The rapid advancements 
of biomedical instrumentation and healthcare technology 
have led to data-rich environments in hospitals. Nevertheless, 
the meaningful information extracted from rich datasets is 
limited. Laboratory tests and patient monitoring are two of 
primary information sources for monitoring critical 
conditions of postsurgical patients in the Intensive Care Units 
(ICU). Commonly, physicians make inferences about patient 
conditions based on most recent test results, ignoring 
important factors such as historical test results and the 
relationships among different types of tests. In the general 
practice of medicine, physicians lack decision-support tools 
that can help them delineate hidden interactions among 
different lab tests, identify temporal variations of patient 
conditions, and predict mortality risks.  

With massive data readily available, it becomes a 
challenge for healthcare providers to improve the current 
utilization of common measures, e.g., lab test results and 
patient monitoring signals. This is even more critical for 
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patients suffering from chronic diseases (e.g., heart diseases) 
or patients in intensive care units. It is estimated that more 
than five million patients are admitted to ICUs yearly in the 
US and 10% to 20% of them die in hospitals [2]. There is a 
dire need to go beyond current medical practices, and 
develop data-driven methods and tools that will enable and 
help (i) the handling of big data, (ii) the extraction of data-
driven knowledge, (iii) the exploitation of acquired 
knowledge for optimizing clinical decisions. 

Predicting ICU mortality is critical for the improvement 
of the quality of healthcare services (e.g., promoting 
effectiveness of surgical procedures, medication usages, care 
guidelines, treatment plans). Further, it will provide data-
driven performance measures to compare the differences of 
healthcare facilities and services, thereby eliminating 
healthcare disparities in the country.  In the state of the art, 
APACHE and SAPS scores are widely used to describe the 
acuity levels of ICU patients. However, they have yielded 
limited success due to the fewer variables and shorter time 
period considered.    

 
Fig. 1. Characteristics of postsurgical datasets in ICU. 

As shown in Fig. 1, postsurgical monitoring in ICU leads 
to massive datasets with unique properties, e.g., variable 
heterogeneity, patient heterogeneity, and time 
asynchronization. There are significant challenges to extract 
useful knowledge from heterogeneous postsurgical datasets 
for the optimization of clinical decision making.  

(1) Variable heterogeneity: In order to capture a complete 
picture of the recovery process of postsurgical patients, ICU 
monitoring includes a large number of variables (e.g., lab test 
results, pulse oximetry, blood pressure, and heart rate). Most 
importantly, there are different types of variables. Some are 
quantitative (continuous, discrete), while others may be 
qualitative (categorical, factors, dummy variables). As 
opposed to the conventional univariate analysis, it is critical 
to discover risk factors and interactions hidden in 
heterogeneous types of variables, reducing them to a 
parsimonious set of sensitive biomarkers that will help in the 
diagnosis, monitoring and prediction. 
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(2) Patient heterogeneity: Further, it may be noted that 
there are also heterogeneous types of patient populations, 
which may be classified by ages, gender, diseases, surgical 
types, or ICU types (e.g., coronary care unit, cardiac surgery 
recovery unit, medical ICU, surgical ICU). This also provides 
an opportunity to investigate mortality rates for different 
patient populations. 

(3) Time asynchronization: It should also be noted that 
the data collection procedures are not standardized in ICU. It 
is common that the frequency of data measurements is at the 
physician’s discretion. In particular, each variable has an 
associated time stamp indicating the time point of data 
recording. However, time stamps are often not uniformly 
distributed along the time axis. During 48-hour ICU 
monitoring, some variables may be recorded in an extremely 
low sampling rate while others may be in a high sampling 
rate. Missing data is also a common property of ICU datasets.  

Hence, there is an urgent need to address the issues of 
variable heterogeneity, patient heterogeneity, and time 
asynchronization and develop analytical methods for patient-
specific prediction of in-hospital mortality. This present 
paper focuses on the prediction of mortality rates in Intensive 
Care Units using patient-specific and heterogeneous 
postsurgical datasets. To cope with the challenges in ICU 
datasets, we developed the postsurgical decision support 
system with a series of analytical tools, including data 
categorization, data pre-processing, feature extraction, feature 
selection, and predictive modeling. 

This paper is organized as follows: Section II will 
introduce the methodology of postsurgical data analytics. 
Section III will detail the materials used and experimental 
results. Section IV discusses and concludes this study. 

II. POSTSURGICAL ICU MONITORING AND ANALYTICS 

Fig. 2 shows the overall flowchart of the proposed data-
driven postsurgical ICU decision support system. Notably, 
healthcare technology in 21

st
 century has given rise to the big 

data in the ICU that involves a greater level of complexity 
and challenge, including variable heterogeneity, patient 
heterogeneity, and time asynchronization. The proposed 
decision support system is embodied by five core 
components (i.e., data categorization, data pre-processing, 
feature extraction, feature selection, and predictive modeling) 
that are effectively integrated to improve patient-specific 
prediction of in-hospital mortality.  

First, we categorize various types of variables into 4 
groups (namely general descriptors, low-sampling variables, 
med-sampling variables and high-sampling variables) based 
on the missing percentage in databases and the average 
number of observations per variable. Second, these four 
categories of variables will be pre-processed to ensure the 
data quality with various imputation and derivation methods 
(see details in Table I). Third, we transform variables into 
features that contain critical clinical information, and then use 
feature selection techniques to reduce high-dimensional 
features into a sparse set of sensitive biomarkers. Finally, we 
construct the predictive models with sensitive biomarkers 
that predict the clinical outcomes for ICU patients. These five 
components are detailed in the following sections. 

 

Fig. 2. Flow chart of postsurgical ICU decision support system. 

A. Data Categorization 

The common measurements in ICU consist of 44 
variables (see details of variable names in Table I). Over the 
course of 48 hours, certain variables were measured at 
different time points with physicians’ discretion due to 
different conditions of patients. It is very often that not all the 
44 variables are recorded for each patient. Each patient may 
be monitored with a subset of variables at non-uniformly 
sampled time points. Variables may be recorded once, more 
than once, or not at all within 48 hours of ICU stay.  

 
Fig. 3. The percentage of missing data for variables. 

For example, Fig. 3 shows the percentage of missing data 
for common variables in one ICU database. Here, six general 
descriptors are excluded because they are recorded once in 
the beginning of ICU stay. It can be seen that none of 
variables is completely recorded for all patients. Also, some 
variables have more than 50% missing in the database. Based 
on the percentage of missing data and the average number of 
observations per variable, we categorize these 44 variables 
into 4 groups as shown in the following Table I.  

 General descriptors: This group of variables includes 
general properties of a patient that are collected when the 
patient is first admitted into the ICU, e.g., RecordID, 
Age, Gender, Height, ICUType, MechVent.  

 Low-sampling variables: more than 50% missing for the 
patients in the database. 
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 Med-sampling variables: The average number of 
observations is less than 15 per patient per variable. 

 High-sampling variables: variables that do not meet with 
the above criteria. 

B. Data Pre-processing 

The step of data pre-processing is to ensure the data 

quality with various imputation and derivation methods that 

are detailed in Table I.  

First, erroneous weight and height values were removed, 

and missing height/weight values were replaced using a 

simple linear regression based on the most common 

height/weight values by gender.  

Second, TroponinT was multiplied by 100 and then 

combined with TroponinI as a new variable, Troponin. If one 

is missing, then the new variable Troponin takes the value of 

the other. Otherwise, it will take the average value. 

Third, Creatinine is replaced by CreatinineClearance, 

which is calculated based using the Cockcroft Gault equation:  

                   
 (       )          
  (                )   (              ) 

Fourth, Urine is replaced by a new variable Urine.Sum, 

which is the cumulative sum of the Urine measurements.  

Fifth, three pairs of variables, i.e., DiasABP and 

NIDiasABP, MAP and NIMAP, SysABP and NISysABP, 

were combined respectively as 3 new time series and add a 

binary variable that will be assigned 1 if the majority 

observations were from the invasive procedure, 0 otherwise. 

Data Category Variables Normal Range 
Missing 

Percentage (%) 
# Observations 
(median±std) 

Data Processing Feature Extraction 

General 
Descriptor 

RecordID  

All available 
Recorded once at 

the beginning 

 

Remain unchanged 

Age   

Gender   

Height  Imputation method 1
a
 

ICUType   

MechVent  35.87 7±7.56  
1: ventilation required 

0: otherwise 

Low-sampling 
Variables 

TroponinI 0~10 94.87 0±0.55 
Imputation method 2

b
 

0: not recorded;  
1: within normal range;  

2: abnormal 

TroponinT 0~0.1 78.42 0±1.19 

Cholesterol 200~1000 92.37 0±0.27  

RespRate 10~20 72.47 0±23.55  

Albumin 3.5~5.4 59.62 0±0.9  

ALP 44~147 57.75 0±1.26  

Bilirubin 0.2~1.9 57.05 0±1.28  

ALT 
F: 10~50;  
M: 5~38 

56.97 0±1.28  

AST 
F: 8~40; M: 

6~34 
56.87 0±1.28  

SaO2 94~100 55.2 0±3.46  

Med-sampling 
Variables 

Lactate 3.7~5.2 45.42 1±3.15  

Imputation 

method 4
f
 

Compute the mean for each 
variable  

BUN 6~20 1.6 3±1.68  

Creatinine 
F: 0.6~1.1; 
M: 0.7~1.3 

1.6 3±1.7 
Replaced by 

CreatinineClearance 

Glucose 70~100 2.82 3±1.8  

HCO3 23~29 1.9 3±1.7  

K 0.5~2.2 2.4 3±1.92  

Mg 1.7~2.2 2.57 3±1.77  

Na 135~145 1.87 3±1.86  

Platelets 150~450 1.7 3±1.91  

WBC 4.5~10 1.82 3±1.57  

HCT 
F: 35~48;  
M: 40~53 

1.6 4±2.58  

PaCO2 35~45 24.42 5±5.72  

PaO2 75~100 24.42 5±5.71  

pH 7.38~7.42 24 5±5.91  

High-sampling 
Variables 

FiO2 0.21~0.5 32.07 8±7.34  
Extract the following statistics for 

each variable: 
minimum 
maximum 
mean 
median 
the first observation  
the last observation  
linear trend in the first 24 hrs 
linear trend in the second 24 hrs 
linear trend over 48 hrs 

GCS 0~3 1.6 13±7.88  

Temp 36~40 1.6 14±17.45  

Urine 1500 2.92 37±12.49 Replaced by Urine.Sum
d
 

Weight  All available 37±26.43 Imputation method 1
a
 

HR 60~100 1.57 55±16.05  

MAP 70~100 30.2 42±30.14 
Imputation method 3

e
 

NIMAP 70~100 12.97 21±20.48 

DiasABP 60~90 30.02 43±29.57 
Imputation method 3

e
 

NIDiasABP 60~90 12.92 21±20.7 

SysABP 100~140 30.02 43±29.59 
Imputation method 3

e
 

NISysABP 100~140 12.67 21±20.7 

a. Erroneous values were removed, and missing values were replaced using linear regression based on the most common values by gender. 
b. Combine TroponinI and 100*TroponinT as a new variable - Troponin. 
c.                     (       )         (                ) (             ). 
d. Urine.Sum is the cumulative sum of Urine. 
e. Combine two variables together and add a new descriptor as: 1 if the majority observations were from invasive procedure; 0 otherwise. 
f. Missing variables were imputed by a random value from the Gaussian distribution representing the normal physiology of each variable. 

TABLE I: POSTSURGICAL ICU DATA CHARACTERISTICS, CATEGORIZATION, PRE-PROCESSING AND FEATURE EXTRACTION  
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Finally, missing values for med-sampling and high-

sampling variables are imputed by a random value from the 

gender-specific Gaussian distribution representing the normal 

physiology of each variable. 

C. Feature Extraction 

After the data pre-processing, we transform variables into 

features with meaningful clinical information (see Table I). 

First, MechVent is transformed into a new binary variable: 1 

if the patient required mechanical ventilation at any time 

during the 48 hour observation period, 0 otherwise.  Second, 

low-sampling variables are transformed into the new 

categorical variables (0: not recorded; 1: within normal 

range; 2: abnormal).   Third, we computed the mean of med-

sampling variables as new predictors.  Finally, for high-

sampling variables, a number of features were extracted 

(including minimum, maximum, mean, median, the first 

observation, the last observation, linear trend over the first 24 

hours, linear trend over the second 24 hours, and linear trend 

over 48 hours. Trends are not computed for variables having 

less than 10 observations in 48 hours or 5 observations in 

either 24-hour period. In total, there are 112 features 

extracted from the ICU datasets (see Section III). Any 

statistics with spurious medical meaning, e.g., 

Urine.Sum.Min, were excluded. In addition, the change of 

weight over 48 hours is recorded as Weight.Delta.  

D. Feature Selection 

Note that a large amount of features are extracted. As a 

result, this may bring the “curse of dimensionality” issues for 

predictive models, e.g., model sensitivity and overfitting 

problems [3]. In this study, we used a filtering method, 

namely minimum redundancy and maximum relevance 

(mRMR) [4], to reduce high-dimensional features into a 

sparse set of sensitive biomarkers. The mRMR method 

selects features that are maximally relevant to the response 

variable while minimizing redundancy between select 

variables. The mutual information of two variables   and   is 

computed as using their joint probabilistic distribution  (   ) 

such that 

 (   )   ∑ (  

   

   )    
 (     )

 (  ) (  )
 

where  ( ) and  ( ) are marginal probabilities and  (   ) is 

the joint probabilistic distribution. Redundancy and relevancy 

are defined respectively according to the following equations: 

   
 

| | 
∑ (   )

   

     
 

| |
∑ (   ) 

   

 

where | | represents the number of features in the feature set 

 ,   and   denote the  th and  th features, and   is response 

variable. Minimizing    and maximizing    ensures minimal 

redundancy and maximum relevancy, and the Mutual 

Information Difference (MID) is         (     ).  

The higher the MID score, the most significant the feature 

is. In order to further minimize redundancy, we add the 

constraint to select only the most important feature for high-

sampling variables. For example, we choose either mean or 

median, minimum or maximum values, first observation or 

last observation, and finally, only one of trend values.  

E. Predictive model and cross validation 

Furthermore, we construct the predictive models that 

associate the input feature pattern   to one of the   classes 

of outcomes        . In this study, clinical outcomes are 

binary (   ), i.e., survival or in-hospital death. The whole 

dataset   is partitioned into the training dataset    
 〈 ( )  ( )〉|          and testing dataset    
 〈 ( )  ( )〉|               , where    and    are 

the size of training and testing datasets,  ( ) takes values in 

the output sets        ,  ( )                   is the set 

of   selected features for the  th record in  .  

 
Fig. 4. The structure diagram of multilayer neural network. 

Fig. 4 shows the multilayer neural network (NN) model 

used in this present study, in which Hyperbolic tangent 

sigmoid transfer function (tansig) is used in the hidden layer 

and log-sigmoid transfer function (logsig) in the output layer. 

The hidden layer includes      neurons and the output 

layer contains     neurons. To reduce the bias in NN 

models, we have utilized both  -fold cross-validation and 

random subsampling [5] in this present investigation. In 

addition, it may be noted that the class sizes are often not 

equal. The classification models, in general, will favor the 

larger (majority) class, thereby affecting the performance for 

testing datasets. For example, we have a highly-imbalanced 

datasets, i.e., 3446 survivals and 554 in-hospital deaths in this 

present study. Therefore, we adopted the ensemble-based 

learning that statistically bootstraps the minority class with 

random replacements [6]. For  -fold cross validation,     

folds are used for training, denoted as   
( )

 and the rest one 

for testing, denoted as   
( )(     

( )). Here, the training 

dataset   
( )

 is augmented by bootstrapping additional 

samples form the minority class in   
( )

 so as to reconstruct 

the balanced training dataset. The classification models are 

trained with this balanced training set. This procedure is 

replicated   times to obtain   different bootstrapped training 

datasets   
( )

. The final prediction results are based on the 

majority voting from   classifiers trained. As such, this 

ensemble voting approach provides more balanced estimates 

of performance metrics. 

III. MATERIALS AND RESULTS 

In this present study, we used real-world ICU dataset to 
evaluate and validate the proposed methodology. This dataset 
is extracted from Multiparameter Intelligent Monitoring in 
Intensive Care (MIMIC) II Clinical Database [7, 8], which 
was developed to advance intelligent patient monitoring 
research in the critical care environment. This dataset is 
divided into two groups, i.e., Set A and Set B, and each of 
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them consists of 4,000 patient records from 48 hours of ICU 
stays (including  coronary care unit, cardiac surgery recovery 
unit, medical ICU and surgical ICU). Clinical outcomes (i.e., 
in-hospital death or survival) are made available for Set A, 
but not for Set B. The training of predictive models is only 
based on 4,000 subjects in Set A.  

 
Fig. 5. The sorted mRMR scores for all the extracted features.  

Fig. 5 shows the sorted mRMR scores of all features 
extracted (see Table I). We empirically selected 47 features 
with the mRMR score greater than -0.005 from the entire set 
of 112 features.. Note that the mean and the last input of 
variables are shown to be more significant than other 
features, and contain sensitive information for the prediction 
of mortality risks. Fig. 6 shows the average performance 
metrics of ensemble NN models (i.e., sensitivity, specificity, 
PPV, NPV and accuracy) that are computed from 100 
random replications of 4-fold cross-validation of Set A. Note 
that the final score is the minimum of sensitivity and PPV. 
Fig. 6 also shows the receive operating characteristic (ROC) 
curve, and the area under the curve (AUC) reaches 0.8755 for 
the NN model. 

 
Fig 6. Performance measures of the ensemble NN model  

Furthermore, Table II shows the comparison of the 
proposed method with various methods in the state of the art 
[9]. The proposed method achieves the score of 0.617, 
indicating data-driven models can not only effectively extract 
the sensitive biomarkers, but also provide accurate prediction 
of ICU mortality risks. In addition, it may be noted that the 
final score for Set B with undisclosed outcomes is 0.50, 
which was evaluated with the help of Dr. Ikaro Silva at the 
Harvard-MIT Division of Health Sciences and Technology. 

TABLE II. PERFORMANCE COMPARISONS OF PREDICTIVE MODELS 

Methods 
Random 
Classifier 

SOFA SAPS-I Fuzzy Rule 
Cascaded 
AdaBoost 

Scores 0.15 0.28 0.32 0.36 0.38 

Methods 
Time Series 

Motifs 
LR & 
HMM 

Neural 
Network 

Bayesian 
Ensemble 

Proposed 
Method 

Scores 0.50 0.50 0.51 0.53 0.617 

IV. CONCLUSION AND DISCUSSION 

Currently, physicians have access to a great deal of data 
to evaluate patient conditions, but these data are not 
processed to be easily interpretable and then be useful to 
perform a proper assessment of patient conditions. The 
development of patient-specific data analytical methods and 
tools will help healthcare providers to better use massive 
healthcare recordings for clinical decision support.  

This present study developed the data-driven ICU 
decision support system with a series of analytical tools, 
including data categorization, data pre-processing, feature 
extraction, feature selection, and predictive modeling. As 
opposed to current clinical practice of visual inspection and 
univariate analysis, this investigation specifically considered 
addressing the challenges of ICU data, including variable 
heterogeneity, patient heterogeneity, and time 
asynchronization. Experimental results on real-world data 
show great potentials of data-driven analytics for improving 
the prediction of ICU mortality risks. Advances in 
postsurgical monitoring practices for patients who undergo 
surgical procedures will significantly decrease the mortality 
rates in ICU and lead to broader social impacts. 
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