

Abstract—A correctly beating heart is important to ensure

adequate circulation of blood throughout the body. Normal

heart rhythm is produced by the orchestrated conduction of

electrical signals throughout the heart. Cardiac electrical

activity is the resulted function of a series of complex

biochemical-mechanical reactions, which involves

transportation and bio-distribution of ionic flows through a

variety of biological ion channels. Cardiac arrhythmias are

caused by the direct alteration of ion channel activity that

results in changes in the AP waveform. In this work, we

developed a whole-heart simulation model with the use of

massive parallel computing with GPGPU and OpenGL. The

simulation algorithm was implemented under several different

versions for the purpose of comparisons, including one

conventional CPU version and two GPU versions based on

Nvidia CUDA platform. OpenGL was utilized for the

visualization / interaction platform because it is open source,

light weight and universally supported by various operating

systems. The experimental results show that the GPU-based

simulation outperforms the conventional CPU-based approach

and significantly improves the speed of simulation. By adopting

modern computer architecture, this present investigation

enables real-time simulation and visualization of electrical

excitation and conduction in the large and complicated 3D

geometry of a real-world human heart.

Keywords: cardiac electrical dynamics, parallel computing,

cellular automata, whole-heart modeling.

I. INTRODUCTION

Computer simulation of human heart is receiving

increasing attention because it empowers scientists to

advance cardiac research and battle against heart disease.

The heart beat is the result of a series of complex

biochemical-mechanical reactions, which involves

transportation and concentration distribution of a dozen of

ionic and molecular species in heart tissue through a various

different biological channels [1, 2]. These biochemical

movements of cardiac ions

(i.e., Na+, Ca2+, K+) create a

local electrical potential

variation, which in turn

cause the contraction of

heart cells. The 4 phases of

electrical potential of

cardiac myocytes (i.e.,

action potential – AP) are

as shown in the Figure 1.

This work is supported in part by the National Science Foundation

(CMMI-1266331 and IOS-1146882).

Corresponding Author: Hui Yang is an assistant professor with the

Department of Industrial and Management Systems Engineering at the

University of South Florida, Tampa, FL, 33620 USA. (e-mail:
huiyang@usf.edu, voice: (813) 974-5579; Fax: (813) 974-5953).

This electrical potential fluctuation will propagate

through every cell of the entire heart to complete one cycle of

heart beat. An ideal comprehensive simulation model will

take into consideration of every aspect of this complicated

biochemical and mechanical interaction and simulate the

process on a full scale of 3D model. However, because of the

complexity of cardiac system, the unknown/unclear aspects

of many details involved in this biological process, and the

limitation of modern computational power; currently

available simulation models usually simplify certain aspects

of the computation and generate an approximate result of the

real-world cardiac process. If the bio-chemical interaction is

carefully monitored and various ionic and molecular species

are simulated, the model will only be able to simulate the

activities of 2D tissue. With currently available (2012)

computational power, several models were developed under

such scheme and they are all only capable of performing

calculation for simplified geometry such as 1D or 2D tissues,

as opposed to real-time whole-heart modeling [3].

Our approach follows a different methodology, which

focus on the macro-scale behavior of the entire heart. To do

such a large-scale simulation, we greatly simplify the

micro-scale simulation by only computing the propagation of

the electrical potential and ignore interactions of any other

bio-chemical species involved in this biological process. This

approach allowed us to observe and analyze the excitation

pattern of a whole heart in real-time condition, which has not

been well-established before. To facilitate this demanding

task, a massive parallel computation model is developed

based on the modern GPGPU (i.e., General-purpose

computing on graphics processing units) architecture.

The organization of this paper is as follows: Section II

presents research methodology of the model. The algorithm

and implementation are described in Section III in details. In

Section IV, we compared the performance of our algorithm

under conventional single CPU architecture and under

modern GPGPU architecture. Section V concludes this

present study.

II. RESEARCH METHODOLOGY

A. Cellular automata model

Two major methodologies coexist in the area of cardiac

modeling. The first is based on a macro/minimal approach,

such as cellular automata model, fitzHugh-Nagumo model

[4], and Barkley Model [5]. The second approach is based on

micro/maximal models, e.g., Hodgkin-Huxley model,

Luo-Rudy model, Rasmusson model and Nygren-Lindblad

model [6, 7]. The macro/minimal models simplify simulation

of ion physics, but they are easier to be incorporated into a

Di Yu, Dongping Du, Hui Yang*, Yicheng Tu

Parallel Computing Simulation of Electrical Excitation and

Conduction in the 3D Human Heart

1 2

3

4 4

0

Fig. 1. Four phases in the cardiac

action potential [1, 2]

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 4315

large-scale system and they can be computed much faster.

This present study is based on the first type of the simulation

approaches. We assumed heart tissue cells are uniformly

distributed excitable media and the excitation and

propagation of cardiac electrical potentials are governed by

the potential of the directly adjacent neighboring cells. The

cell will stay in excited condition for an experimentally

predetermined period, and then drop back to resting condition

and waiting for the next excitation. Based on clinical

experimental data of heart tissue and only considering the

measured potential of the cells, we free ourselves from the

time consuming calculation of the underlying bio-chemical

process, and avoid the uncertainties and inaccuracy

introduced by unreliable and /or unavailable constants and

parameters in the biological transportation model of ions and

molecular species in various channels of heart tissue. With

the modern GPGPU architecture, we are able to develop a fast

algorithm that can handle large and complicated 3D geometry

of a real human heart.

B. GPGPU acceleration

Our model can be categorized as one type of cellular

automata models. Cellular automata models have been

widely used in computational simulation research on

biological processes, excitable media modeling, disease and

disaster propagation, macroeconomic fluctuations in human

society, and Conway's mathematical game of life [8]. In this

project, to achieve real-time simulation, we employed

modern GPGPU computing architecture to accelerate the

massive computation in the simulation. The cellular

automata model is suitable for deployment on a parallel

computing framework. Each unit in such a system is only

determined by the state of its neighboring units. To determine

the overall state of the system, each unit’s state can be

calculated independently. Such a problem is a typical one

among many computation bound problems that are perfectly

suitable for harnessing the computational capabilities of

GPGPU processors [9]. The modern GPGPU devices are

increasingly gaining popularity in the areas of scientific

research as well as industrial applications because of the

better affordability and cost effectiveness.

C. Algorithm

Because we only consider the potential of the cell and the

potential can be determined by time alone in our simplified

model, we can model the excitation of a single cell if we keep

track of the duration when the cell has entered excitation

state. For example, if a cell is excited at time zero (t=0), it will

stay in the excited state for 200 ms (t=200) and then returns to

resting state. A cell can only be excited when a neighboring

cell is in the excited state. It would be ideal if each cell in the

heart can be represented by one point in the 3D heart model;

however that will generate an overwhelmingly huge 3D

model that cannot be handled by current computers.

Therefore, a 3D heart model with limited resolution has to be

used and the distance between two neighboring points will

cover a space between many heart cells. In this work, we used

the 3D anatomic heart model digitally reconstructed from a

series of 2D images of many parallel cross sections of a real

human heart. This distinguishes our model from conventional

cellular automata models. Our model need to calculate the

distance between any two neighboring points and estimate

how much time it will take for the excitation to propagate

from one point to the other. The whole algorithm is provided

below:

The 3D heart model consists of two files:

1) A list of all the points representing mass of a heart. The

information for each point includes the index of this point,

and xyz coordinates of this point.

2) A list of all the tetrahedral formed by any 4 conjunction

points. Each tetrahedral is represented by index of 4

points.

The data preparation steps:

1) For each point, find out its neighboring points and then

generate a linked list of these neighboring points. This is

done by traversing the tetrahedral file and adding a link to

the linked list of each point if this point is found in current

tetrahedral data.

2) Calculate the distance from each point to every neighbor

that this point has a conjunction relationship.

After the data preparation step, we then have an array of all

the points and each element of the array is a linked list

recording every neighboring point and mutual distances.

Therefore, each point can be represented by the index of the

pointneighboring point 1 (distance), neighboring point 2

(distance), neighboring point 3 (distance), etc. An example of

this data structure is shown below:

01(8),3(8),4(6.9282),5(6.9282),7(8),8(6.9282),249(6.9282

),2692(7.64532),2695(6.9282),2696(7.7316),2698(7.32724),

2713(8.57508),2717(5.65685),2718(6.63325),2721(6.9282),

2740(5.65685),2741(6.63325),2742(6.63325),2759(4),2760(

6.63325),2762(5.65685),2764(5.65685),2767(6.9282),2769(

8.30697),2771(5.65685),2772(8.34392),2775(6.9282),2803(

6.63325),2808(4),2809(5.65685),2810(5.65685),2824(6.633

25),2825(4),2826(5.65685),2830(5.65685),7789(5.65685)tot

al neighbor36

10(8),2(8),4(6.9282),5(6.9282),15(8),17(8),18(6.9282),19(

6.9282),27(6.9282),37(6.9282),2720(6.63325),2721(6.9282)

,2762(5.65685),2767(6.9282),2806(6.63325),2810(5.65685),

2863(6.63325),2865(5.65685),2922(6.63325),2926(4),2927(

5.65685),2928(5.65685),7745(6.63325),7747(5.65685),7748

(6.63325),7789(5.65685),7790(6.63325),7792(4),7793(6.63

325),7797(5.65685),7801(5.65685)total neighbor31

21(8),3(8),4(6.9282),5(6.9282),9(8),11(6.9282),12(6.9282

),26(8),27(6.9282),36(6.9282),37(6.9282),38(6.9282),2811(

6.63325),2817(6.63325),2821(5.65685),2925(6.63325),2927

(5.65685),2931(6.63325),2934(4),2935(5.65685),2936(5.65

685),7795(6.63325),7797(5.65685),7798(6.63325),7813(5.6

5685),7814(6.63325),7816(4),7817(6.63325),7820(5.65685)

,7823(5.65685)total neighbor30

The computation steps:

1) Make an array of timer for each point. The value of timer

indicates the current state of the point. If the timer value is

in between 0 and 200, the point is in excited state. If the

4316

timer value is greater than 200, the point is in resting state.

If the timer value is negative, the point has an excited

neighboring point and will be excited in a later time when

timer increases to 0. Initialize all the timer value to a large

positive number such as 5000, which indicating the whole

heart is at resting condition.

2) Select one particular point, and set its timer value to 0 as

making this point the starting of the excitation.

3) For each point that the timer value is 0, look up the

neighboring points of this point. We will call this point as

starting point, and the neighboring points as ending

points. Depends on the timer value, we will do one of the

three possible tasks to each ending point’s timer:

a) if the ending point is already excited (timer value is

within 0 to 200 range) do nothing

b) if the ending point is in resting state (timer value >

200), set its timer value to a negative integer, which

equals to floor(C*d), here C is a negative constant that

represents the propagation speed of such excitation

within heart tissue, and d is the distance between

starting point and the ending point, and the floor(C*d)

function takes the maximum integer that’s less than

C*d.

c) if the ending point’s timer already has a negative

value, which means some other starting point has

already set the timer of this ending point, compare its

current timer value to floor(C*d) and set the timer

value to the one with less absolute value. Smaller

absolute value of the negative timer indicates that

excitation reaches the ending point quicker.

4) Increment every point’s timer by 1.

5) Repeat step 3 and 4 and we will observe excitation

propagation by visualizing the 3D heart according to the

timer value of each point.

D. Algorithm Discussion

Under the framework of our current model, we have

specifically considered the following points:

1) Since the model use discrete time to calculate the state of

the points, we have to assign integer value to the timer of

each point, and thus the floor function is adopted to round

off digits after point. The floor function will introduce

certain error into the calculated results. However, we do

not expecting such error will be significant since we are

modeling the process in a very fine resolution of 1ms.

2) The excitation propagation speed constant, C, should be

determined with experiment and might varies under

different situation.

3) The excitation duration from 0 to 200 ms is based on

experimental results and might vary from case to case.

4) The location and number of initially excited point(s) can

be picked arbitrarily

5) Spiral waves are simulated under certain circumstances.

For e.g., excitation time span is too small or multiple

excitation starting points are selected. This indicates

irregular cardiac arrhythmias in the form of spiral

excitation and reentry phenomena in an excitable media.

III. MATERIALS AND EXPERIMENTAL DESIGN

A. Implementation Platform:

We implemented our simulation application on a

workstation with a Intel dual core i3-2100 CPU @ 3.10GHz

and 16G of DDR3 memory. The graphic card is an Nvidia

Telsa C2075 with 6GB global memory, for fast rendering and

simulation computation. The operating system is 64bit

Window 7. The simulation application consists of two major

components, the simulation component and the visualization

component. OpenGL was selected as the visualization /

interaction platform because it is open source, light weight

and universally supported by various operating systems. The

application is developed with C++ under Microsoft Visual

Studio 2010. The source code of the application should be

relatively easy to transfer to other operating system since no

special dependency to Microsoft VS IDE exists. OpenGL

provided the basic rendering loop iteration and GUI

mechanism. The simulation algorithm of application was

implemented under several different versions, one

conventional CPU version and several GPU versions based

on NVidia CUDA platform.

B. OpenGL User Interface:

The glew and freeglut libraries are used for common

OpenGL rendering and UI event commands [10]. OpenGL

automatically adjusts the drawing frame rate to accommodate

the simulation. The regular frame rates OpenGL supports are

60fps, 30 fps, 20 fps, 15fps, and 10 fps and below. To achieve

better interactive visualization results, the frame rate of 30fps

and above is preferred. In each rendering loop, if the

simulation takes less than 1/60 second, the OpenGL will wait

until 1/60 second is reached and draw one frame, thus

resulting in a 60fps rendering rate. If the simulation takes

longer than 1/60 second but shorter than 1/30 second, the

OpenGL will then wait until 1/30 second is reached and then

draw one frame and thus resulting in a 30 fps rendering rate.

Therefore, the ultimate goal of simulation is to efficiently

calculate the status of all points in shortest possible time.

Several functions were introduced to facilitate real-time

user interaction with the 3D model. They are listed below:

1) Restart simulation at any time

2) Manually select any excitation point and restart

simulation at any time

3) Introduce new excitation at any time during a simulation

process

4) Freeze the simulation at any time and observe simulation

evolves step by step at any time.

5) Change the excitation time range and excitation

propagation constant at any time

6) Slice the heart open and into pieces and observe real-time

or frozen excitation propagation within the heart

7) Observe the simulation under point cloud mode or

regular rending mode

All these functionalities are realized under OpenGL events

and can be controlled by either keyboard or mouse.

4317

C. CPU Simulation Implementation

A straightforward implementation under CPU

architecture was carried out. The algorithm traverses through

all the 728321 points in the 3D model to finish one round of

iteration of the simulation calculation and determine the

status (timer value) of every point in the 3D heart. It then

calls the OpenGL to render the whole heart according to the

timer value of every point. A gradient color scheme was

adapted for rendering the heart. The white color represents

the exact moment of excitation of the point (t=0), the red

color represents the waiting and resting status and (t<0 and

t>200). The color transitions from white to yellow, orange,

and red when the timer value increases from 0 to 200.

D. GPU Simulation Implementation – Case 1

The original algorithm was modified to a parallel version

to adapt to the NVidia GPU architecture. Instead of iterating

through every point, we issue every point a thread, which is

responsible for incrementing the timer of the thread, looking

up the neighboring points, and calculating and storing the

negative timer value for the point if applicable. We thus

launch 728321 threads to the GPU multicore processors and

run these threads in parallel. The status of the timer for each

point is stored in an array located in the global video memory.

The neighboring points and distance data were stored in

arrays located in the global video memory as well. Each

thread will access the global video memory when it needs to,

and thus made the application memory-bandwidth bound

instead of computation bound. Once all the threads finished

their work to update the timer value, a second GPU kernel is

lunched, again one thread per point to update a color buffer of

the points, which is stored in global memory of the video

card. The color is calculated according to the timer value of

each point. This step is again a memory-bandwidth bound

step. After the color buffer is updated, CUDA hand OpenGL

a pointer to this color buffer so that OpenGL can perform

rendering based on the color data. No extra copy of the data

in the color buffer array is needed. This technique is called

OpenGL/CUDA coop, which will significantly reduce the

time needed for rendering.

E. GPU Simulation Implementation –Case 2

Because the algorithm is a memory-bandwidth bound one,

it is possible to improve the performance by reducing the

memory access. To do that, we considered moving our data

into faster shared memory and accessing them from there.

Since CUDA copy memory in a batched manner, instead of

individually, when a particular start point need to access the

first neighboring point data, all its neighboring points data

will be copied to shared memory at the same time. Therefore,

we can only copy once and utilize the neighboring data

multiple times. To utilize that, we now lunch a thread for each

neighboring points. Because the irregular data pattern, some

points have up to more than 200 neighbors. Therefore, we

lunch 256 threads for each starting point. Each of these 256

threads will work on one neighbor point of that starting point.

The first thread will be responsible to copy the entire data of

the neighboring points into shared memory. Once that data is

accessible in shared memory, all the thread will find a

corresponding neighboring point to work with. The task

performed is increment timer array that’s located in global

memory, calculate C*d if applicable and update timer value

accordingly. If the thread amount is greater than the total

neighboring points, extra threads will be idle and wasted. We

perform such actions for all the 728321 points and finish one

round of iteration of simulation computation. After this kernel

is finished, a second kernel is lunched to update the color

buffer that’s stored in the global memory. The second kernel

operates in the same manner as the first implementation of

GPU.

F. Performance Comparison

Three implementations were executed under the identical

hardware and software environment. The average time

required computing the status of all the points in the 3D heart

model was recorded and compared.

 Fig. 2. 3D heart model Fig. 3. Sectional view of 3D heart

IV. RESULTS

A. Visualization and User Interface

The heart 3D model is color coded according to its

anatomic structure. The slicing function can be applied

conveniently to show the inner condition of the heart. Totally

6 slice plane can be applied to divide the 3D model into any

desirable configuration as shown in Figure 2 and 3.

Fig. 4. Different excitation time span generates different excitation band
width. (a) Time span = 200, (b) Time span = 50.

The simulation process can be viewed continuously. The

progress of the propagation of the heart excitation wave can

be paused at any moment. The excitation and propagation

speed can be adjusted manually as shown in Figure 4 (a-b).

When cells are firstly excited and the electrical potential

reaches its peak value, the color turns white. As its status gets

(a) (b)

4318

back to resting condition, the potential decreases and the

color turns yellow, orange and eventually original red color.

The excitation origin can be handpicked by mouse. The

excitation can start from a single point, several points or a

continuous region.

Spontaneous spiral waves are observed under certain

conditions, such as repeatedly exciting a certain area of the

heart as shown in the Figure 5. This is more prone to happen

when the excitation band width is relatively narrow, and the

excitation wave front has better chance to penetrate the wave

thickness and reaches its own wave end. The slicing

functionality helps visualize the formation and evolvement of

spiral waves inside the heart.

Fig. 5. The sectional views of heart show the formation of spiral waves

during electrical conduction. Spiral waves are initiated on the spot located at
the middle left site inside the heart, which is made visible when the heart is

sliced. The excited front of spiral waves is marked with blue lines to show its

progression and self-regeneration.

B. Performance comparison

Even though the appearance of three different

implementations is the same, the performances are drastically

different. Figure 6 shows the average time of calculating the

status for all the points in the heart.

Fig. 6. Performance comparison of three implementations

This simulation process for CPU implementation is

relatively slow and can barely satisfy the real-time rendering

requirement. The total time elapsed for the simulation to

finish is approximately 16ms on our machine. The GPU 1

implementation lunched one thread for each point and

utilized OpenGL/CUDA coop to save data transferring time.

It had the best performance of an average of 0.5ms, which is

30 times faster than purely based on CPU. The GPU 2

implementation attempts to make use of the fast data

transferring within shared memory. The overall performance

of this implementation is not as fast as the first

implementation of GPU, but still better than CPU

implementation. An average of 8 ms was reported for this

implementation. Shared memory did not accelerate the

overall simulation process, possibly because most points has

only approximately 30 neighboring points, and we launch 256

just to cover a few extremely crowed points. Therefore most

of the points experience significant waste when the rest of the

200+ threads were not utilized. This behavior reduced

possible benefit and prevented significant speed gain.

V. CONCLUSION

With modern massive parallel computation power of

GPGPU, we have developed an effective 3D model of an

anatomically realistic human heart to perform realtime

simulation of cardiac electrical activities. Our model is useful

to demonstrate the nature formation of spiral wave, which

indicates that such pattern of excitation behavior is an

intrinsic character of the excitable media. It may be noted

that this present work did not incorporate the micro-scale

simulation of the ionic and molecular species. However, it is

very possible to include such low level of modeling into the

developed simulation platform. Given the rapid development

in the field of GPGPU architecture, real-time, multi-scale,

and comprehensive simulation of a 3D human heart with

unprecedented details and accuracy will be explored in our

future study.

REFERENCES

[1] D. Du, H. Yang, S.A. Norring, E.S. Bennett, "Multi-scale modeling of

glycosylation modulation dynamics in cardiac electrical signaling."
Proceedings of 2011 IEEE Engineering in Medicine and Biology

Society Conference, pp. 104-107, September 2, 2011, Boston, MA.

[2] D. Du, H. Yang, S. Norring, and E. Bennett, “In-silico modeling of
glycosylation modulation dynamics in hERG channels and cardiac

electrical signaling,” Vol. 18, No. 1, p205-214, 2013

[3] E. Bartocci, E. M. Cherry, J. Glimm, R. Grosu, S. A. Smolka, S. A.
Smolka, and F. H. Fenton, "Toward real-time simulation of cardiac

dynamics," Proceedings of the 9th International Conference on

Computational Methods in Systems Biology, pp. 103-112, 2011

[4] R. FitzHugh, Mathematical models of excitation and propagation in

nerve, pp. 1–85, H.P. Schwan, ed., Biological Engineering,

McGraw-Hill Book Co., N.Y., 1966

[5] D. Barkley, "A model for fast computer simulation of waves in

excitable media". Physica D: Nonlinear Phenomena, vol. 49, Issues 1–

2, pp. 61–70, 1991.

[6] J. R. Silva and Y. Rudy, "Multi-scale electrophysiology modeling:

from atom to organ," The Journal of General Physiology, vol. 135, pp.

575-581, June 01, 2010.

[7] E. V. Bondarenko and L. R. Rasmusson, "Simulations of propagated

mouse ventricular action potentials: effects of molecular

heterogeneity," Am J Physiol Heart Circ Physiol, vol. 293, pp.

H1816-H1832, 2007.

[8] M. Gardner, Mathematical Games - The fantastic combinations of John
Conway's new solitaire game "life", pp. 120–123. ISBN

0-89454-001-7, 1970

[9] GPU Computing Gems Emerald Edition, 1st Edition from Wen-mei
Hwu. ISBN-9780123849885, Printbook , Release Date: 2011.

[10] OpenGL Programming Guide: The Official Guide to Learning

OpenGL(R), Dave Shreiner, Addison Wesley 7th edition.

4319

