
  

  

Abstract— Over 50% of the 273,000 individuals with spinal 

cord injuries in the US have cervical injuries and are therefore 

unable to operate a keyboard and mouse with their hands. In 

this experiment, we compared two systems using surface 

electromyography (sEMG) recorded from facial muscles to 

control an onscreen keyboard. Both systems used five sEMG 

sensors to capture muscle activity during five distinct facial 

gestures that then mapped to five cursor commands: move left, 

move right, move up, move down, and click. One system used a 

discrete movement and feedback algorithm, in which the user 

would make one quick facial gesture, causing a corresponding 

discrete movement to an adjacent button. The other system was 

continuously updated and allowed the user to move in any 360º 

direction smoothly. Information transfer rates (ITRs) in bits 

per minute were high for both systems. Users of the continuous 

system showed significantly higher ITRs (average of 68.5; p < 

0.02) compared to users of the discrete system (average of 54.3 

bits/min). 

I. INTRODUCTION 

An estimated 273,000 individuals in the U.S. [1] and 
770,000 to 7.84 million [2] individuals worldwide have 
spinal cord injuries (SCI). Of these individuals, 54.1% have 
cervical injuries (e.g. C1-C7), and are therefore unable to 
use their arms and hands to use a mouse and keyboard [3]. 
This impacts many aspects of quality of life, including the 
ability to maintain employment [4]. 

There are a variety of systems that allow these users to 
control an on-screen cursor in real-time. The most common 
classes of devices in use clinically are voice-activated 
designs, mouth sticks, machines that track head movement, 
eye-trackers, and sip-and-puff designs [4]. Each of these 
systems has downsides: often they are fatiguing to the user, 
not appropriate for people with a wide range of physical 
abilities, difficult to calibrate, or expensive [5]. Brain 
controlled devices using electroencephalography (EEG) are 
accessible to individuals with a wide range of disabilities, 
but are very slow for practical use [6]. 

Individuals with high spinal cord injuries have 
unimpaired facial musculature, because these muscles are 
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innervated by cranial nerves that are unaffected by the spinal 
cord injury. In this paper, we describe two systems that take 
advantage of this spared muscle function by using facial 
surface electromyography (sEMG). sEMG requires intact 
muscle control, but has a much higher signal to noise ratio 
than EEG [7]. Further, sEMG is noninvasive, simple to 
apply, and provides real-time information about muscle 
activation.  

We tested the ability of healthy individuals to use facial 
sEMG to move a cursor to spell words using one of two 
systems. One system used a discrete algorithm for 
processing one facial gesture at a time that caused a 
corresponding discrete movement of the cursor to an 
adjacent button. The other system continuously monitored 
the signals coming from each electrode and recalculated 
cursor velocity at a much shorter time scale, allowing the 
user to move the cursor in any 360º direction and control the 
speed of the cursor movement based on the relative 
magnitude of the sEMG signals. We predicted that the 
discrete system would be easier to learn due to its simplicity, 
but that the greater degree of flexibility of the continuous 
system would allow users to spell words more quickly. We 
measured the speed and efficiency of the systems in 
information transfer rate (ITR) [8]. 

II. METHODS 

A. Participants 

Participants were 14 healthy adults who reported no 
history of speech, language, or hearing disorders and were 
fluent speakers of American English. Participants were 
pseudorandomly assigned to one of two experimental 
groups: discrete or continuous. The average age of the seven 
individuals (two males) in the discrete group was 20.0 years 
(SD = 1.0) and the average age of the seven individuals (two 
males) in the continuous group was 20.0 years (SD = 1.2). 
All participants completed written consent in compliance 
with the Boston University Institutional Review Board. 

B. Experimental Setup 

The participants had one training session that lasted 
approximately 90 minutes and included skin preparation, 
sEMG sensor application, calibration, and 45 trials of 
interaction with one of the sEMG keyboard systems. Each 
trial consisted of using the sEMG system to spell out one of 
45 common American English five-letter words, using the 
interface shown in Fig. 1. After each trial, the user was 
presented with their ITR from that trial as feedback.  

Five single differential sEMG sensors were placed 
parallel to the underlying muscle fibers of the left risorius 
and orbicularis oris, right risorius and orbicularis oris, 
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Figure 1. Left: User interface. Five letter stimulus is presented at the top 

of the screen and each letter the user types appears below. Right: 

Electrode placement (see Table I). 

frontalis, mentalis, and orbicularis oculi (see Fig. 1 and 
Table I). Each of these electrodes was placed over one or 
more muscles that are activated during a particular facial 
gesture; the sEMG recorded during these movements was 
then mapped to a cursor movement (see Table I). We chose 
these muscles and movements because healthy individuals 
are able to activate them independently and concurrently at 
will, and because the facial placement of the electrodes 
corresponds to the movement of the cursor. That is, when 
the user contracted muscles at the top of her face, the cursor 
moved up. When she contracted muscles on the left of her 
mouth, the cursor moved left. 

TABLE I.  ELECTRODE PLACEMENT 

Electrode 

Number  

Electrode 

Placement 
Muscle Group Facial Gesture 

Cursor 

Action 

1 
Left of 

mouth 

Risorius and 

orbicularis oris 

Left cheek movement, 

similar to half a smile 

Move  

left 

2 
Right of 

mouth 

Risorius and 

orbicularis oris 

Right cheek 

movement, similar to 

half a smile 

Move 

right 

3 
Above 

eyebrow 
Frontalis Eyebrow raise 

Move  

up 

4 Chin Mentalis Chin contraction 
Move 

down 

5 

Side and 

slightly 

below eye 

Orbicularis 

oculi 
Hard wink or blink Click 

 

The sEMG signals were preamplified and filtered using 
three Bagnoli-2 EMG systems (Delsys, Boston, MA) set to a 
gain of 1000 with a band-pass filter with roll-off frequencies 
of 20 and 450 Hz. Simultaneous sEMG signals were 
recorded digitally with National Instruments hardware and 
custom MATLAB (Mathworks, Natick, MA) software at 
1000 Hz. 

C. Data Acquisition and Calibrations 

Prior to use of the interface, data from four “calibration 
runs” was collected. For each calibration run, the user was 
asked to make each facial gesture twice (i.e., left left; right 
right; up up; down down; blink blink). The maximum RMS 
from each electrode was averaged across calibrations and 
used to calculate thresholds. These thresholds were set using 
multipliers determined during pilot testing and represented 
the activation required for the system to recognize the 
sEMG signal as indicating a deliberate gesture. For 

example, the threshold multiplier for the blink electrode was 
0.7; each participant was therefore required to produce an 
activation that was at least 70% of the average maximum 
blink RMS from his own four calibrations in order for the 
system to register a blink. The threshold multiplier for the 
left, right, up, and down electrodes was 0.6 in the discrete 
condition and ranged from 0.3 to 0.5 per electrode for the 
continuous condition. The threshold multiplier for the blink 
electrode was 0.7 for both conditions.  

Information from the calibrations was used to determine 
a movement interval for the discrete condition. After each 
calibration, the maximum duration of sEMG activation 
across all facial gestures was calculated. Participants had 
mean movement durations across calibrations ranging from 
407 ms to 1150 ms (mean = 669 ms, SD = 249 ms). Each 
participant’s own mean movement duration was used as her 
movement interval. Personalizing these movement intervals 
allowed participants with quicker facial movements to move 
more quickly, but prevented those with slower facial 
movements from overshooting the target. 

D. Discrete Condition 

The discrete system allowed the user to move one button 
at a time using only one quick facial movement, analogous 
to using the arrow keys on a keyboard. The maximum RMS 
from the signal from each electrode during the user-specific 
movement interval was compared to thresholds in order to 
determine whether the user intended to click or move the 
cursor. 

 If the RMS of the signal from the blink electrode went 
over threshold at any point during the personalized window, 
the cursor was ‘clicked’ to select a letter and then returned 
to the center of the keyboard. If the RMS of the signal from 
the blink electrode did not go over threshold, the algorithm 
next checked if the RMS of the signal from one of the other 
electrodes went over threshold. If the signal from only one 
electrode went over threshold in that length of time, the 
cursor was moved from the center of one button to the 
center of the next (see Fig. 1). However, if the maximum 
RMS in more than one of the channels went above 
threshold, the cursor was not moved and the user was 
informed that there was an error by a red box appearing 
around the keyboard.  

E. Continuous Condition 

The continuous system allowed the user to move in any 
360º direction by using isolated facial gestures as in the 
discrete condition, or by combining facial gestures together. 
In this system, the cursor moved smoothly in small 
increments, rather than jumping from button to button as in 
the discrete case. The RMS was calculated from each 
electrode every 60 ms. If the RMS of the signal from the 
blink electrode was higher than the blink threshold, the 
cursor was ‘clicked’ to select a letter and then returned to 
the center of the keyboard. 

The x and y movement of the cursor was calculated 
using (1) and (2). The RMS values from the left, right, up, 
and down electrodes (RMSR, RMSL, RMSU, RMSD) were 
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divided by their respective thresholds from calibrations, and 
then squared to determine the magnitude of the cursor 
movement [9]. Then the magnitude of the left was 
subtracted from the right, and the up was subtracted from 
down. Values were then multiplied by a scalar (speed in (1) 
and (2); identical for all participants), to convert the 
magnitudes to changes in the x and y cursor position. 

 Δx = [(RMSR/thresholdR)
2
 - (RMSL/thresholdL)

2
]× speed

 Δy = [(RMSD/thresholdD)
2
 - (RMSU/thresholdU)

2
]×speed

F. Performance Measure 

The information transfer rate was calculated for each 
trial in bits per minute using Wolpaw’s method shown in (3) 
[8]. This method used bits per selection, in which N was 26, 
the number of targets on the screen, and A was accuracy 
from 0 to 1. Bits per selection (3) was converted to ITR in 
bits per minute by multiplying by the selection rate: the 
number of selections (5 letters) divided by the time the user 
took to spell the word. Participants were shown their ITR 
after each trial and told to try to maximize it in upcoming 
trials. 

bits / selection = log2(N) + A × log2(A) + (1 - A) ×  
log2((1 - A) / (N - 1))  

G. Statistical Methods 

Statistical analysis was performed using Minitab 
Statistical Software (Minitab Inc, State College, PA). An 
unpaired two-sample Student’s t-test was performed to 
determine the effect of system type on mean ITR. An F-test 
of equality of variances was also performed to determine if 
within-group variability was equivalent. 

III. RESULTS 

A.  Overall Performance 

Over all the trials, participants had individual mean ITRs 
between 37.6 and 77.1 bits/min, with a mean of 61.4 
bits/min (SD=11.5). Participants generally had higher ITRs 
closer to the end of the session. The average over the last 
fifteen trials was 72.4 (SD=13.0). Fig. 2 shows mean 
performance per individual over the entire session and over 
the final fifteen trials. 

B.  Group Effects 

The group of participants using the discrete system had a 
mean individual performance score of 54.3 bits/min (SD 
12.0), whereas the group of participants using the 
continuous system had a mean individual performance score 
of 68.6 bits/min (SD 4.8). A two-sample t-test showed that 
these groups were significantly different (p < 0.02). Further, 
the inter-participant variability was significantly different 
between the two groups (F-Test, p < 0.05). Over the last 
fifteen trials, participants using the discrete system had a 
mean individual performance score of 64.0 (SD 12.6), and 
continuous users had a mean score of 80.7 (SD 3.9). 

IV. DISCUSSION 

A. Comparisons to Other Systems 

Continuous users had faster performance than discrete 
users (continuous: 18.5 letters/min; discrete: 14.7 
letters/min). Both groups of subjects had mean ITRs that 
were much higher than invasive and non-invasive BCIs. 
ITRs were also much higher in this study than in other 
sEMG studies that use continuous muscle control [9-12] 
(see Fig. 2). ITRs were comparable to eye-tracking systems 
(see Table II). 

Eye tracking requires high illumination, stable head 
positions, complete control over eye movements, and users 
cannot look away from the screen without an error [13]. 
Some head tracking systems do not require specific lighting 
or position [9], but users with very high spinal cord injuries 
may not be able to control their head position well enough to 
use these systems, as some required muscles (e.g. 
sternocleidomastoid) are innervated by cervical nerves. 

TABLE II.  COMPARISONS TO OTHER SYSTEMS 

System 

ITR Range 

(bits/min) 

Example 

References 

Eye-tracking (+ predictive methods) 60-222 [14-17] 

Mechanical Switch (+ predictive methods) 96-198 [15] 

Head tracking and orientation devices 78 [9] 

sEMG systems (continuous muscle control) 5.4-51 [9-12] 

Invasive BCIs 5.4-69 [18, 19] 

Non-invasive BCIs 1.8-24 [19-22] 

 

sEMG systems do not require any particular lighting, 
and a user can be in any position as long as they can clearly 
see the computer screen. The systems described in this 
paper use visual feedback and therefore also require some 
intact vision, but alternate systems could be adapted for 
users with visual impairments [23]. 

 

 

 

 

Figure 2. Mean information transfer rate over all 45 trials in bits per 

minute. Error bars are SD. Asterisk indicates subject’s mean performance 

on last 15 trials. Horizontal dotted line shows maximum ITR from other 

sEMG systems [9-12] (see Table II). 
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B. Limitations 

sEMG systems require careful setup and calibration. In 
this study, two participants were unable to obtain clean 
calibrations and therefore did not attempt the task. These 
participants were unable to separate the five facial gestures, 
either due to coactivation (i.e. some participants tensed both 
right and left orbicularis oris when attempting to isolate the 
right gesture) or due to individual differences in facial 
geometry (i.e. one participant was not noticeably blinking 
during left facial gesture, but the electrode placed over the 
orbicularis oculi picked up muscle activation from this 
gesture). 

C. Future improvements 

In the future, these sEMG systems could be modified for 
use by individuals with a wide variety of capabilities. The 
classifier in these systems is simple and relies mostly on the 
user to learn to control their own muscle activation. If users 
have voluntary, independent control over at least five 
distinct muscle groups, they could use any of those groups 
to control the cursor, with no modification of the software. If 
users do not have independent control over five distinct 
muscle groups, a machine learning algorithm could be 
implemented to recognize patterns of muscle movements as 
representing each of the intended movements. Further, this 
type of algorithm could allow the system to use fewer than 
five electrodes, significantly cutting down on cost and setup 
time.  

Other changes could maximize the ITRs from these 
systems including training protocols and predictive direction 
and text models. Users in both groups had higher ITRs in 
the final trials as compared to the entire session (Fig. 2), and 
other studies show that training increased their users’ ITRs 
by nearly 50% [16]; Additionally, adding a language 
prediction model could improve the final ITRs by as much 
as 100% [24, 25]. 
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