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Abstract— Detection of interictal discharges is a key element
of interpreting EEGs during the diagnosis and management
of epilepsy. Because interpretation of clinical EEG data is
time-intensive and reliant on experts who are in short supply,
there is a great need for automated spike detectors. However,
attempts to develop general-purpose spike detectors have so far
been severely limited by a lack of expert-annotated data. Huge
databases of interictal discharges are therefore in great demand
for the development of general-purpose detectors. Detailed
manual annotation of interictal discharges is time consuming,
which severely limits the willingness of experts to participate. To
address such problems, a graphical user interface “SpikeGUI”
was developed in our work for the purposes of EEG viewing
and rapid interictal discharge annotation.

“SpikeGUI” substantially speeds up the task of annotating
interictal discharges using a custom-built algorithm based
on a combination of template matching and online machine
learning techniques. While the algorithm is currently tailored
to annotation of interictal epileptiform discharges, it can easily
be generalized to other waveforms and signal types.

I. INTRODUCTION
Interictal discharges [1] are essential in the diagnosis and

management of epilepsy. However, they are difficult to detect
in a consistent manner. Attempts have been made to create
automatic systems and algorithms [2], [3], [4], which are not
fully tested nor accepted universally. The biggest hurdle to
achieving a strong algorithm for detection is the lack of a
sufficient database of annotated EEG records.

There are many ways we could go about establishing a
foundation for this problem. We could have a number of ex-
perts manually create a database. However, detailed manual
annotation of interictal discharges is slow and boring, es-
pecially for records with many interictal discharges (several
thousands per hour), which severely limits the willingness
of experts to participate. Alternatively, we could employ an
existing detection system supplied commercially to create a
database. But the sensitivity and specificity of these systems
are poorly documented. As a result, we would not be able
to use this as anything approaching a gold standard.

To this end, we have come up with a hybrid approach to
reduce the labor and speed the process of acquiring expert
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annotations of EEG data. It is a MATLAB-based graphical
user interface, named “SpikeGUI”, which is designed for
EEG viewing, and rapid interictal discharge annotation. It
is based on the observation that, within patients, interictal
discharges tend to be fairly stereotyped, which suggests that
selecting one example as a template can enable instantly
and automatically extracting many more candidate matches,
which can then be rapidly accepted or rejected by an expert.
The rapid vote/feedback in turn suggests that annotation can
be further speeded up by being cast into an online learning
task, which provides progressively higher recommendations.

“SpikeGUI” is a full-featured EEG viewer that is de-
signed to be easy to use and allow for high speed viewing.
“SpikeGUI” employs a custom-built signal processing algo-
rithm consisting of template matching [5] and online machine
learning [6] to ensure rapid interictal discharge annotation.

This paper is organized as follows. In section II, we
briefly discuss our scalp EEG data and techniques involved in
“SpikeGUI”. In section III, validation and annotation results
are presented, and in section IV concluding remarks and
recommendations for future work are offered.

II. MATERIALS AND METHODS

A. Epileptic Scalp EEG

We consider here data from 303 patients with known
epilepsy who underwent scalp EEG recording at MGH with
international 10-20 system of electrode placement. In each
case, a 30-min EEG record with 19 scalp electrodes was
used. EEG recordings were down-sampled to 128Hz, and
band-pass filtered between 0.1 and 64Hz. A notch filter was
applied to remove the 60Hz power-line interference.

B. Rapid Interictal Discharge Detection

There are 2 major techniques involved in rapid interictal
discharge detection: template matching and online machine
learning. Template matching is applied to generate a list of
interictal discharge candidates based on the z-normalized
Euclidean distance computed with respect to a given
interictal discharge template. Online machine learning is
used afterwards to refine the ranking in the list for further
selection.

1) Template Matching: Template matching (TM) [7], [8]
is carried out based on the z-normalized Euclidean distance.
Euclidean distance between 2 samples p, q ∈ R1×n denoted
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by ‖p− q‖ is computed as:

‖p− q‖2 =

n∑
i=1

(pi − qi)2. (1)

It is commonly used to measure the similarity between
samples. For each record, a distance look-up table (LUT)
is computed beforehand with respect to the same reference
randomly selected. To reduce computational complexity, the
triangle inequality [8], [9] is applied to reject samples far
away from the given template as shown in Fig. 1, and narrow
down the range of search to a small group of samples.
The accepted samples are further ranked according to the
Euclidean distance to the given template in ascending order.
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Fig. 1: The triangle inequality to reject samples outside the
accepted region (a > r); with O denoting the reference for
LUT computation, P the sample, A the template, (a, b, c)
the sides of 4OPA, and r the radius of accepted region.

2) Online Machine Learning: Online machine learn-
ing (OML) is a model of induction that learns sequen-
tially [10]. OML is applied after TM to further refine the
ranking in the list of candidate waveforms. The key defining
characteristic of OML is that the true label of the instance
is revealed soon after the prediction is made, to refine the
prediction hypothesis for future trials. Due to continual label
feedback, the online learning algorithms are able to adapt
and learn in difficult situations.

The goal of the algorithm is to minimize some perfor-
mance criteria which are algorithm specific. In this paper,
the MATLAB-based toolbox LIBOL [11] is applied to pro-
vide a collection of various OML algorithms. Specifically,
the second formulation of “Soft Confidence-weighted learn-
ing” (SCW-II) [10] is selected as our OML algorithm with
the best performance, which will be explained in detail in
Section III.

Mathematically, at time step t, SCW-II receives the incom-
ing sample xt, and predicts its label ŷt. The true label yt is
then revealed and the loss l(yt, ŷt) is determined. Assuming a
Gaussian distribution of weights with mean µ and covariance
Σ, the loss function of SCW is defined as:

lφ(N (µ,Σ); (xt, yt)) = max(0, φ
√
x>t Σxt − ytµxt), (2)

with φ denoting the inverse of the cumulative function of the
normal distribution. The optimization problem can be written
as:

(µt+1,Σt+1) = arg minµ,ΣDKL(N (µ,Σ)‖N (µt,Σt))

+Clφ(N (µ,Σ); (xt, yt))
2,

(3)

with DKL denoting the Kullback-Leibler divergence [12], C
the parameter to tradeoff the passiveness and aggressiveness.
The closed-form solution of the optimization problem in
Eqn. (3) is:

µt+1 = µt + αtytΣtxt

Σt+1 = Σt − βtΣtx>t xtΣt,
(4)

with αt, βt denoting the updating coefficients. The detailed
proofs can be found in [10].

In our work, multiple time and frequency features relevant
to interictal discharges are used for training OML: (i) peak
and (ii) peak-to-trough values, (iii) steepness (defined as
the time taken to drop from the maxima to its 25% ),
(iv) variance, and (v) power in frequency band between 20
to 80Hz. Features (i)-(iv) are extracted from the smoothed
nonlinear energy operator (sNLEO) [13] of the waveform,
while feature (v) is obtained directly from the waveform
itself.

C. The “SpikeGUI” System

The “SpikeGUI” graphical user interface (GUI) consists of
two sub-GUIs: the navigation GUI (Fig.2) for EEG viewing
and annotation; and the minor GUI (Fig.3) to display the list
of candidate waveforms located by TM+OML.

After importing the EEG recording, it is shown in the nav-
igation window along with previous annotations if any. Basic
navigation functions are available such as shifting along
time either at different step size (5s or 10s) or via a swift
slider, amplitude scaling up/down, montage swap (monopo-
lar, common average, and bipolar), and manual annotation.
The button “Auto-Template Match” is meant for the core
algorithm for rapid annotation, i.e., TM+OML. To execute
this function, one has to manually select an interictal dis-
charge template by left clicking the mouse at the interictal
discharge (right clicking to un-select) before pressing the
button. A list of SpikeGUI-recommended waveforms with
respect to the template will pop up immediately for further
selection (See Fig. 3).

The waveforms are ranked according to the similarity
to the template resulting from TM+OML in descending
order. Interictal discharges newly selected will be annotated
automatically in the navigation window as shown in Fig. 2.
Apart from navigating along time with fixed time step-size
or sliders, interictal discharges annotated can be reviewed
by buttons “previous spike” and “next spike”, which jumps
directly to the nearest (±1) interictal discharge marker found
in the record. Annotation status in terms of total current
interictal discharge count and OML classification rate are
shown at the top for the purpose of supervision.

“SpikeGUI” creates an individual record for each user,
and allocates memory to export and store interictal discharge
markers instantly. One can cease in the middle of annotation
and come back to start from where one left off before.
It also allows to load and view markers from others.
With easy and quick addition and deletion of discharge
markers, “SpikeGUI” becomes a handy tool for Ground
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Fig. 2: A labeled screenshot of the navigation window of “SpikeGUI”. The EEG recordings are displayed with old markers
if any: interictal discharges are labeled in red with pink background, and baselines are marked by pairs of magenta-green
lines. Manual selection/annotation of interictal discharges/backgrounds can be easily done by left clicking the mouse at the
target (right clicking to un-select). The current template manually selected is labeled in red with yellow background.
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Fig. 3: List of candidate waveforms for further selection
by checking radio buttons. The waveforms are ranked in a
descending order of similarity to the template.

Truth Generation, i.e., the markers have to be agreed by 3
experts simultaneously, which is crucial for developing and
validating detection algorithms. “SpikeGUI” is written in
MATLABr [14] and distributed using a run time compiler
freely available from The Mathworks. “SpikeGUI” can be
run on both Windows and Linux OS.

III. RESULTS

In this work, we developed an algorithm for efforts to
annotate epileptiform discharges in clinical EEG recordings.
It is based on the observation that, within patients, interictal

discharges tend to be fairly stereotyped, i.e., close in z-
normalized Euclidean distance. It suggests that selecting
one example as a template can extract many more matches
rapidly (see Fig. 4).
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Fig. 4: Percentage histograms of z-normalized Euclidean
distance of interictal discharges (red) and randomly selected
segments (blue) extracted from the same record.

Although fast, TM has its own drawbacks, resulting in
occasional bad ranking in the list of waveforms (see Fig. 5).
Simple Euclidean distance may not be adequate to represent
the similarity and reveal the important morphological pat-
terns of the interictal discharges, especially the main peaks.
It may lead to low acceptance rate and consequentially slow
down the annotation process.

With feedback from the user, the annotation can be
cast into an OML task. By continuously learning from
previous annotations, the current ranking in the list can
be refined by applying OML (see Fig. 5). To choose
the proper OML algorithm, benchmark experiments were
carried out with 14 different OML algorithms: Percep-
tron [15], RAMMA and agg-RAMMA [16], OGD [17], PA-
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Fig. 5: OML improves the ranking: (left) suboptimal ranking
by TM alone; (right) improved ranking due to OML.

I and PA-II [18], SOP [19], CW [20], IEL-
LIP [21], NHERD [22], AROW [23], NAROW [24], SCW-I
and SCW-II [10], using 100 interictal discharges and 100
non-interictal discharges from the same record. As shown in
Fig. 6, “SCW II” outperformed the others with the lowest
mistake rate, less no. of updates, and relatively low time
cost.
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Fig. 6: Comparison of various OML algorithms; with perfor-
mance criteria (a) cumulative rate of mistake, (b) cumulative
no. of updates, and (c) cumulative time cost vs. the no. of
samples.

To study the annotation speed of “SpikeGUI” in different
scenarios, we had 3 experts annotate the same record (with
900+ interictal discharges) using “SpikeGUI” with manual
annotation alone, TM alone, and TM with OML. The time
costs are summarized in Tab. I.

Manual TM TM+OML
Expert 1 180 min 80 min 40 min
Expert 2 150 min 85 min 50 min
Expert 3 200 min 90 min 55 min

TABLE I: Time costs of annotation experiments in different
scenarios: manual annotation, TM alone, and TM with OML.

IV. CONCLUSIONS
In this work, we developed a MATLAB-based graphical

user interface “SpikeGUI” for rapid interictal discharge anno-
tation. “SpikeGUI” employs a custom-built signal processing
algorithm toward automated EEG analysis, consisting of
techniques such as template matching and online machine
learning. While the algorithm is currently tailored to anno-
tation of interictal epileptiform discharges, it can easily be
generalized to other waveforms and signal types.

We have already extracted 35000+ interictal discharges
from 303 patients, and the number continues to grow. With
the database built at hand, we will push the project to develop
a general-purpose interictal discharge detector in the near
future.
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