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Abstract— Falls are a common and serious problem faced by
older populations. There is a growing interest in estimating the
risk of falling for older people using body-worn sensors and
simple movement tasks, allowing appropriate fall prevention
programs to be administered in a timely manner to the high
risk population. This study investigated the capability and
validity of using a waist-mounted triaxial accelerometer (TA)
and a directed routine (DR) that includes three movement tasks
to discriminate between fallers and non-fallers and between
multiple fallers and non-multiple fallers. Data were collected
from 98 subjects who were stratified into two separate groups,
one for model training and the other for model validation.
Logistic regression models were constructed using the TA
features from the entire DR and from each single DR task,
and were validated using unseen data. The best models were
obtained using features from the alternate step test to classify
between fallers and non-fallers with κ = 0.34−0.41, sensitivity
= 68%−71% and specificity = 63%−73%. However, the overall
validation performances were poor. The study emphasizes the
importance of independent validation in fall prediction studies.

I. INTRODUCTION

Falls suffered by older people are a major public health
problem facing many countries. Fall-related injuries are a
major cause of hospitalization and institutionalization. It
was estimated that the cost of health care related to falls
by older people (≥ 65 years old) in Australia was more
than $600 million in 2007-08 [1]. Falls suffered by older
people can also increase their fear of falling, and diminish
their confidence in performing normal daily activities, which
can lead to reduced engagement in normal activities and a
further deterioration of their general well-being. A high risk
of falling is often associated with muscle weakness, poor
balance control, gait deficiency, cognitive impairment and
fear of falling [2]. Most of these deficits can be reflected
in the way people move. Many studies have reported that
mobility dysfunction is strongly associated with a higher risk
of falling [3], [4]. It is proposed that through an analysis
of the movement patterns of older people, those with a
higher risk of falling can be identified. Accurate fall risk
screening would help facilitate the prevention of future falls
by administrating appropriate intervention strategies to high
risk populations.

A body-worn sensor-based system could be useful for
unsupervised assessment, and for long-term fall risk mon-
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itoring, allowing a proper intervention program to be admin-
istered in time. Much research effort has been directed at the
concept of using body-worn sensors for movement pattern
analysis for fall risk assessment [5], [6], [7], [8]. Some
studies attempted to replicate a clinical fall risk tool [5], [6],
while others tried to classify between high risk and low risk
classes according to their fall history or prospective falls [7],
[8]. However, most sensor-based fall risk assessment studies
only reported the performance of the model on training data
with a small sample size, making their predictive accuracy
uncertain.

Previously, a model was developed to approximate the
assessment provided by a widely-used clinical fall risk as-
sessment tool, using a waist-worn triaxial accelerometer (TA)
and a directed routine (DR) with a cohort of 68 subjects [6].
However, the developed model tended to be over-fitted, with
more than 30 features selected. In addition, no appropriate
validation was performed. The current analysis aims to
investigate the capability and validity of using these TA
signals to discriminate between fallers and non-fallers and
between multiple fallers and non-multiple fallers, according
to their prospective 12-month fall data. In addition to these
68 subjects, data were also collected from another cohort
with higher risks of falling, using the same waist-attached
TA and the DR. Data from these two cohorts are stratified
into training and testing groups to perform two-fold cross
validation. The predictive capability and validity of TA
signals from each of the three DR movement tasks is also
examined.

II. METHODS

A. Instrumentation

A small triaxial accelerometer (TA) device with a size of
71×50×18 mm was used in both studies. The accelerometry
sensors had a range of ±1.5 G (where G = 9.81 ms−2), and
were sampled at a rate of 40 Hz per channel. Data were
streamed via a Class 1 Bluetooth radio link to a connected
computer in real-time. The TA was attached to the waist
at the right anterior iliac area, to measure body movement
during the DR assessment. The three axes of the TA were
approximately aligned with the vertical (x-axis), mediolateral
(y-axis) and anteroposterior (z-axis) axes of the subject’s
frame of reference.

B. Directed Routine Assessment

The DR is a set of simple movement tasks which takes
approximately five minutes to complete. It includes three
different movement tasks, which are the Timed Up-and-Go
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Test (TUGT), Alternate Step Test (AST) and Sit-to-Stand
transfer with five repetitions (STS5):

• The TUGT was performed by rising from a sitting
position, walking for 3 m in a straight line, turning
around, walking back to the chair, and sitting down in
the chair, as quickly as possible.

• The AST was performed by standing in front of a
platform (which is 19 cm high and 40 cm wide), and
alternately placing the left foot on the platform and then
back to the floor, repeating four times for each foot, as
fast as possible.

• The STS5 was performed by doing five sit-to-stand
transfers on a normal height (43 cm) chair, with arms
folded in front of the chest, as quickly as possible.

C. Subjects

1) NeuRA subject cohort (2007-2008): In the previous
study, 68 subjects aged from 72 to 91 years (80.00 ± 4.40
years, 69% females), were recruited from the Neuroscience
Research Australia (NeuRA, formerly named Prince of Wales
Medical Research Institute), Sydney, Australia [5]. The Uni-
versity of New South Wales (UNSW, Sydney, Australia)
ethics committee approved the study. The inclusion criterion
were that the participants must be able to perform the DR
assessment and a clinical fall risk assessment, and must have
no known major cognitive impairment. All 68 subjects of the
NeuRA cohort completed all the three DR tasks and the fall
diaries for the following twelve months.

2) Manly subject cohort (2012-2013): A second dataset
was collected at the physiotherapy outpatients clinic at Manly
Hospital , Sydney, Australia. The study was approved by the
Northern Sydney Central Coast Ethics Committee. A total of
44 subjects aged from 68 to 92 years (80.61 ± 6.08 years,
75% females) were recruited. All subjects recruited were
referred for physiotherapy assistance with the ultimate aim
of preventing falls. The same inclusion criteria as the NeuRA
study was used.

Fifteen of the 44 subjects dropped out, mainly due to
health problems, before the end of the 12-month follow-up
period. Moreover, many subjects could not complete all three
DR tasks under the described conditions. Of the 29 subjects
who provided a 12-month prospective fall dairies, 17 subjects
performed the TUGT task, 27 subjects were able to perform
the AST task, and 21 subjects were able to perform the
STS5 task. Only 11 subjects were able to perform all three
DR tasks and completed all fall diaries in the subsequent
12 months. Data from subjects who were only capable of
performing one or two DR tasks are still considered useful,
and were used in the modelling analysis based on a single
DR task. A comparison of the participants (who provided
usable data) in the two cohorts is shown in Table I.

D. Stratification

Subjects from the Manly cohort were generally frailer
than those from the NeuRA cohort, for the reason that the
Manly subjects were recruited to a physiotherapy service
after being referred by relevant clinicians as already having

TABLE I
COMPARISON BETWEEN THE NEURA COHORT AND SUBJECTS WHO HAD

USABLE DATA FROM THE MANLY COHORT.

Sample Mean (SD) Number of Previous 12 mo. falls Prospective 12 mo. falls

size age (years) females vs. males 0 1 2+ 0 1 2+

NeuRA 68 80.00 (4.40) 47 vs. 21 46 13 9 42 17 9

Manly* 30 80.37 (5.97) 26 vs. 4 6 9 15 8 11 11

*Only subjects who had prospective 12-month fall diaries and were able to perform at least one DR task
(TUGT, AST or STS5) were included.

a suspected risk of falling. The NeuRA study, however,
involved recruitment from the community, which attracted
generally healthy individuals with a lower risk of falling.
It is also apparent from Table I that there is a much larger
proportion of multiple fallers in the Manly cohort than in the
NeuRA cohort. Neither one of the subject cohorts seems to
represent the general older population. Thus, data from both
cohorts were pooled together and then randomly stratified
by gender, age, and fall history into two matched groups, to
give training and validation groups with a range of fall risks
which are more representative of the community-dwelling
older population. Each of the two stratified groups were
used as a training sample once, while the other group would
be used for validation of the trained model (two-fold cross
validation).

E. Signal Processing

The accelerometry signals from the DR assessment tasks
were first segmented into smaller sections demarking the
start, end, and other fiducial events in the signals, before fea-
ture extraction. A set of automatic event detection algorithms
developed by Redmond et al. were employed for signal
segmentation. Refer to Narayanan et al. [5] for information
on the event markers used in this study, and Redmond et al.
[9] for details of the automatic segmentation algorithms.

Following segmentation, a total of 123 features were
extracted from the accelerometry signals generated during
the DR assessment. There were 51 temporal and energy-
related feature, as described in the study of Narayanan et
al. [5]; seventy-two additional features were then extracted
from the frequency spectra of the x−, y− and z−axis accel-
eration components and an acceleration magnitude signal,
as described by Liu et al. in [6]. In addition to the TA
based features, age and gender were also considered for fall
prediction. Table II shows a summary of the 125 features.

F. Fall Prediction Model Training and Validation

A logistic regression model was employed to classify
between low fall risk subjects and high fall risk subjects,
according to their prospective 12-month fall diaries. The
study examined the fall risk categorization in two ways: one
classifies between non-fallers and fallers, and the other is
between non-multiple fallers and multiple fallers. A forward
stepwise feature selection method was employed to obtain
an nearly optimal subset of features that would fit the
training data well. The feasibility of using accelerometry
features from all three DR tasks for fall prediction, and using
features from each single movement task for fall prediction,
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TABLE II
SUMMARY OF THE 125 CANDIDATE FEATURES (ADAPTED FROM [10]).

Feature no. Feature name
1 TUGT total time duration (log transformed)
2-5 TUGT time intervals for standing, walking 3 m, turning, walking back, sitting (log transformed)
7 TUGT fstep
8, 9 TUGT RMS of high-pass filtered SVM and TUGT SMA
10 - 13 TUGT first 6 harm. freq. ratio of SVM, xBA, yBA, zBA

14 - 17 TUGT fund., 2nd, 3rd, 4th harm. magnitude ratio of SVM
19 - 22 TUGT fund., 2nd, 3rd, 4th harm. magnitude ratio of xBA

24 - 27 TUGT fund., 2nd, 3rd, 4th harm. magnitude ratio of yBA

29 - 32 TUGT fund., 2nd, 3rd, 4th harm. magnitude ratio of zBA

18, 23, 28, 33 TUGT even to odd harm. magnitude ratio of SVM, xBA, yBA, zBA

34 - 42 AST total time duration and time intervals for each stepping movement (log transformed)
43, 44 Standard deviation and normalized SD of AST time differences (log transformed)
45, 46 AST dissimilarity of leading foot steps and trailing foot steps
47 AST dissimilarity of leading/trailing step pairs
48, 49 AST RMS of high-pass filtered SVM and AST SMA
50, 51 AST SMA of weakest cycle and strongest cycle
52 AST max. - min. cycle SMA
53 AST SMA ratio between strongest and weakest cycle
54 AST SMA variance per cycle
55, 56 AST SMA of leading foot cycles and lagging foot cycles
57 AST SMA ratio of leading/trailing leg energy
58, 59 AST SMA variance for leading foot cycles and trailing foot cycles
60 - 63 AST first 5 harm. freq. ratio of the SVM, xBA, yBA, zBA

64 - 67 AST fund., 2nd, 3rd, 4th harm. magnitude ratio of SVM
69 - 72 AST fund., 2nd, 3rd, 4th harm. magnitude ratio of xBA

74 - 77 AST fund., 2nd, 3rd, 4th harm. magnitude ratio of yBA

79 - 82 AST fund., 2nd, 3rd, 4th harm. magnitude ratio of zBA

68, 73, 78, 83 AST even to odd harm. magnitude ratio of SVM, xBA, yBA, zBA

84 - 89 STS5 total time duration and time intervals for each STS movement (log transformed)
90, 91 Standard deviation and normalized SD of STS time differences (log transformed)
92 STS5 dissimilarity of sit-to-stand cycles
93, 94 STS5 RMS of high-pass filtered SVM and STS5 SMA
95, 96 STS5 SMA of the weakest and the strongest cycle
97 STS5 max. - min. cycle SMA
98 STS5 SMA ratio between strongest and weakest cycles
99 STS5 SMA variance per cycle
100 - 103 STS5 first 4 harmonics frequency ratio of SVM, xBA, yBA, zBA

104 - 107 STS5 fund., 2nd, 3rd, 4th harm. magnitude ratio of SVM
109 - 112 STS5 fund., 2nd, 3th, 4th harm. magnitude ratio of xBA

114 - 117 STS5 fund., 2nd, 3rd, 4th harm. magnitude ratio of yBA

119 - 122 STS5 fund., 2nd, 3rd, 4th harm. magnitude ratio of zBA

108, 113, 118, 123 STS5 even to odd harm. magnitude ratio of SVM, xBA, yBA, zBA

124-125 Age, Gender

TABLE III
COMPARISON BETWEEN THE TWO STRATIFIED GROUPS.

Sample Mean (SD) Number of Previous 12 mo. falls Prospective 12 mo. falls3

size age (years) females vs. males 0 1 2+ 0 1 2+

DR Group I1 39 80.03 (4.59) 28 vs. 11 24 9 6 22 14 3

DR Group II 40 79.75 (4.47) 29 vs. 11 24 7 9 22 10 9

TUGT Group I2 43 79.56 (4.66) 31 vs. 12 27 8 8 24 13 6

TUGT Group II 42 80.02 (4.20) 30 vs. 12 23 10 9 22 13 7

AST Group I2 47 80.34 (4.67) 35 vs. 12 25 12 10 22 15 10

AST Group II 48 80.15 (4.64) 35 vs. 13 26 9 13 27 11 10

STS5 Group I2 45 80.40 (4.78) 33 vs. 12 26 9 10 23 15 7

STS5 Group II 44 80.39 (4.80) 33 vs. 11 23 11 10 22 10 12

1 The DR Group I & II were stratified using subjects from both cohorts who have usable accelerometry data for all
three DR tasks.
2 The TUGT group I & II were stratified using subjects from both cohorts who have usable accelerometry data for
TUGT, similar to AST group I & II, and STS5 group I & II.
3 The prospective 12-month fall data were not used in the stratification process.

were all investigated. Age and gender were included in all
investigated feature pool before stepwise selection.

III. RESULTS

Table III shows a comparison of demographics for the
two stratified groups using the pooled assessment data from
both cohorts, when using accelerometry signals from all three
DR tasks, and when using accelerometry signals from single
DR tasks. Sample size increases when using accelerometry
data from single DR task, as there were fewer subjects who
were able to perform all three DR tasks. Table III shows
the sample size, mean age, and female to male ratio of the
stratified groups. The numbers of subjects in each faller class
(non-faller, single faller and multiple faller) according to their
fall history and according to prospective fall diaries are also
listed in Table III.

Table IV shows the performance of the logistic regression
models in classification between non-multiple fallers and

TABLE IV
THE PERFORMANCE OF THE LOGISTIC REGRESSION MODEL IN

CLASSIFICATION BETWEEN NON-MULTIPLE FALLERS AND MULTIPLE

FALLERS.

Train Test Selected Features* Accuracy Sensitivity Specificity κ

DR Group I DR Group II {10,14,46} 73% 11% 90% 0.02

DR Group II DR Group I {21,101,102,116} 82% 0% 89% -0.10

TUGT Group I TUGT Group II {4,18} 83% 14% 97% 0.16

TUGT Group II TUGT Group I {1,10,15,21} 79% 50% 84% 0.28

AST Group I AST Group II {35} 73% 0% 92% -0.11

AST Group II AST Group I {} 79% 0% 100% 0.00

STS5 Group I STS5 Group II {99,100,110,117,118} 73% 22% 86% 0.09

STS5 Group II STS5 Group I {95,102,121} 77% 20% 94% 0.18

*Feature no. refers to Table II.

TABLE V
THE PERFORMANCE OF THE LOGISTIC REGRESSION MODEL IN

CLASSIFICATION BETWEEN NON-FALLERS AND FALLERS.

Train Test Selected
Features*

Accuracy Sensitivity Specificity κ

DR Group I DR Group II {11,44,51,57,90,121} 63% 58% 67% 0.25

DR Group II DR Group I {5,10,13,36,100,102} 62% 47% 73% 0.20

TUGT Group I TUGT Group II {2,4} 52% 25% 77% 0.02

TUGT Group II TUGT Group I {8,10,33} 47% 53% 42% -0.06

AST Group I AST Group II {38,42,47,73} 67% 71% 63% 0.34

AST Group II AST Group I {35,42,52} 70% 68% 73% 0.41

STS5 Group I STS5 Group II {109} 56% 55% 56% 0.11

STS5 Group II STS5 Group I {86,123} 47% 54% 60% 0.14

*Feature no. refers to Table II.

multiple fallers (2+ falls). The accuracy in classification of
the validation sample is shown in the table, as well as the
selected features after stepwise feature selection. Table IV
also lists the sensitivity and specificity of the classification
performance during model validation, as well as Cohen’s
kappa coefficient, as a measure of the agreement between
the estimated classes and the real faller categories [11]. The
performance of the logistic regression models in classifica-
tion between non-fallers and fallers is shown in Table V.

IV. DISCUSSION AND CONCLUSION

Firstly, this study has investigated the ability of step-
wise logistic regression modelling to classify between non-
multiple fallers and multiple fallers, when using accelerome-
try data from three different DR tasks. It must be noted that
the multiple faller categories are heavily unbalanced in all
the cases, whichever DR tasks were used, as there are only
20 out of all 98 subjects (drawn from both cohorts) in the
multiple faller category (see Table III). Using accelerometry
data from all three DR tasks, the selected models obtained
a poor validation performance when testing on the other
subject group (judged from sensitivity, specificity and κ
derived from estimated classes and the real faller classes).
The model trained on DR Group I obtained a validation
performance with sensitivity = 11%, specificity = 90% and
κ = 0.02, while the model trained on DR Group II had a
similar validation performance (sensitivity = 0%, specificity
= 89% and κ = −0.10). Using only accelerometry data from
the TUGT, the selected logistic regression model had the
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best validation performance in classification between non-
multiple fallers and multiple fallers. The model trained on
TUGT Group I had a validation performance of sensitivity =
14%, specificity = 97% and κ = 0.16, and the model trained
on TUGT Group II gave sensitivity = 5%, specificity = 84%
and κ = 0.28 in validation. Both AST and STS5 features
showed poor validation performance. Age and gender were
included in the feature pool, but were not selected in any
logistic regression models.

Secondly, the logistic regression model was also investi-
gated in classification between non-fallers and fallers; these
two fall risk classes are much more balanced (48 of the 98
subjects are in the faller category). From Table V, when using
accelerometry data from all three DR tasks, the model per-
formed relatively better than the performance in classifying
between non-multiple fallers and multiple fallers. The model
trained on DR Group I had a validation sensitivity = 58%,
specificity = 67% and κ = 0.25, while the model trained
on DR Group II achieved sensitivity = 47%, specificity
= 0.73 and κ = 0.20 in validation. Interestingly, the model
using AST data alone obtained the best performance, with
sensitivity = 71%, specificity = 63% and κ = 0.34 for
the model trained on AST Group I, and sensitivity = 68%,
specificity = 73% and κ = 0.41 for the model trained
on AST Group II. One AST feature was selected in both
models, which is the log-transformed time interval for the last
stepping movement. The TUGT data and STS5 data, when
used in the stepwise logistic regression model separately,
both had a poor performance in validation. Again, age and
gender were not selected in any models.

It is possible that the trained models are over-fitted to the
available training data. The large feature dimensionality and
the small sample size might contribute to the over-fitting
problem, as there will be an increased chance of discovering
a false relationship between some feature and the target in
the small training sample, especially when all 123 features
from the three DR tasks were included, with only less than
40 subjects used for model training; although the feature
number was reduced significantly after feature selection. The
same dimensionality problem can be seen from the previous
study by the author [6], where an extremely over-optimized
model was obtained with over 30 features selected for only
68 training sample, and no independent validation performed.

The lack of common selected features between models
trained on the two stratified groups, and their subsequent
poor validation performance, also indicates that the trained
models do not accurately fit the true data distribution for
the general population. The number of training examples
(≤ 48) is less than half of the total number of the pooled
sample, and will hardly be representative of the general older
population. Besides, the entire sample size is also relatively
small(≤ 98). While it is pooled from a both generally healthy
subject cohort and a frailer cohort, it may still not represent
the general population in this age group.

It is also noted that the reliability of the extracted features
was not examined. A test-retest reliability investigation may
also help in feature dimensionality reduction. Features which

are not reliable between task repeats, or are sensitive to minor
variations in device placement, should be discarded before
model training.

Many researchers have also used body-worn sensors
with certain movement tasks for prospective fall prediction.
Greene et al. reported a mean accuracy of 79.69% with cross
validation, in classification between fallers and non-fallers,
using gait parameters extracted from two shank-attached
sensors during TUGT [7]. However, it seems that features
were selected based on entire data set before cross-validation,
thus the reported performance does not reflect the general
performance on an independent data. Doi et al. reported a
good training performance (specificity = 84.2%, sensitivity
= 68.8%) using a stepwise logistic regression model [8].
However, the stepwise regression was performed on features
that were significantly correlated with falling in bivariate
analysis, thus the trained model might be over-optimistic.
Moreover, no validation performance was reported. Most of
the previous studies did not have proper validation using
data that are independent from the training process, and
thus their expected predictive performance on unseen data
is unknown. A proper independent validation is required to
estimate the model’s future performance when applied to the
general population.
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