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Abstract— The recording of brain event-related potentials
(ERPs) is a widely used technique to investigate the neural
basis of sensory perception and cognitive processing in humans.
A commonly used assumption, when dealing with potentially
overlapping ERPs elicited by successive stimuli with inter-
stimulus interval (ISI) smaller than the latency of the ERPs,
is that their interaction is linear. These overlaps are usually
dealt by using averaged waveforms, mostly to enhance the
signal-to-noise ratio (SNR) and performing algebraic waveform
subtractions. In this paper, we examine the hypothesis of
linear interactions by providing a statistical framework that
examines the presence of nonlinear additive effects between
overlapping ERPs elicited by successive stimuli with short ISIs.
The statistical analysis is designed for single trial rather than
averaged waveforms. The results suggest that there are no
nonlinear additive effects due to the time overlap per se but that,
for the range of ISIs examined, the second ERP is modulated by
the presence of the first stimulus irrespective of whether there
is time overlap or not. In other words, two ERPs that overlap
in time can still be written as an addition of two ERPs, with the
second ERP being different to the first. The modulation effect
on the second ERP by the first stimulus varies for different
ISIs.

I. INTRODUCTION

Event-related potential (ERPs) consist in transient
monophasic deflections in the human electroencephalogram
(EEG), elicited by fast-rising sensory, motor or cognitive
events [1], [2]. Because of their usually small magnitude
compared to background EEG, the identification of ERPs
relies on techniques that enhance their signal-to-noise ratio
(SNR). Although approaches that allow estimating ERPs
in single trials have been recently developed (e.g. [3],[4]),
the most widely used approach to enhance their SNR is
to average responses across-trials in the time domain [1].
For this reason, in most ERP experiments a large number of
stimuli is presented.

There are many occasions where short inter-stimulus in-
tervals (ISIs) are necessary; e.g., in order to obtain a reliable
response [1]. This may cause overlap between successive
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ERPs and consequently distortion in their respective wave-
forms. In order to account for this, simple ERP subtraction
[1] or more elaborate methods such as the adjacent response
(Adjar) technique [5] have been proposed.

An implicit assumption in all the aforementioned ap-
proaches is that ERP generation is a time-invariant and linear
process. This implies that the total ERP elicited by two
(or more) successive stimuli is equal to the linear addition
between the ERP waveforms that would have resulted if each
stimulus was applied separately, irrespective of whether there
is time-overlap or not between the successive ERPs. Whereas
it is relatively straightforward to determine whether there
exist nonlinear interactions between successive stimuli when
there is no time overlap, i.e. when the ERP waveforms are
distinct, this is not the case when there is overlap in time.
Moreover, one may view the ERP generation process as a
system with memory equal to the ERP duration. Therefore,
an important question is whether this system behaves nonlin-
early when multiple stimuli occuring at ISIs that are shorter
than its memory.

In the above context, we present a statistical framework
that can be used to examine the presence of nonlinear
interactions between successive ERPs when there is possible
time overlap, using the single-trial waveforms instead of the
commonly used averaged ones [6]. We apply the proposed
approach to somatosensory ERPs elicited by nociceptive
laser stimulation presented in pairs at different ISIs rang-
ing from 250 to 2000 ms, using EEG measurements. Our
approach is a direct consequence of the definition of nonlin-
earity between successive impulsive-like stimuli. The results
present strong evidence against the traditional assumption of
linear interactions.

II. EXPERIMENTAL METHODS AND DATA

Eleven healthy volunteers aged from 22-50 years par-
ticipated in the study. Noxious radiant-heat stimuli were
generated by an infrared neodymium yttrium aluminium
perovskite (YAP) laser with a wavelength of 1.34 µm. At
this short wavelength, the skin is very transparent to the laser
radiation and, consequently, the laser pulses activate directly
nociceptive terminals in the most superficial skin layers [7].
Laser pulses were directed to the dorsum of the right hand
and a He-Ne laser pointed to the area to be stimulated.

EEG data were collected in a single recording session,
comprising ten blocks of stimulation. In each block 30 trials
were presented, with an inter-trial interval ranging between
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15 and 18 seconds. In each trial, laser pulses were delivered
to the dorsum of the right hand either as a single laser
stimulus (SINGLE), or as a pair of laser stimuli (S1- S2)
presented at an inter-stimulus interval (ISI) of 250, 500,
1000 or 2000 ms. The ISI was randomly varied across trials,
and single-stimulus trials were intermixed with paired trials.
The EEG was recorded using 30 Ag–AgCl electrodes placed
on the scalp according to the International 10-20 system,
using the nose as reference. To monitor ocular movements
and eye blinks, electro–oculographic (EOG) signals were
recorded from two surface electrodes, one placed over the
lower eyelid, the other placed 1 cm lateral to the outer corner
of the orbit.

Data pre-processing was performed using Letswave [2]
and Matlab (The Mathworks Inc, USA). Continuous EEG
recordings were segmented into epochs using a time window
of 3.5 s (−0.5 to +3 s relative to the onset of the first
stimulus). The sampling rate used was 1,024 Hz, thus each
waveform was comprised of 3584 time points. Each epoch
was baseline corrected using the time interval ranging from
-0.5 to 0 s as reference, and bandpass filtered. Electrocu-
lographic and electrocardiographic artifacts were subtracted
using a validated method based on Independent Component
Analysis [8].

III. METHODS

Broadly speaking, a system is any entity that transforms
an input variable into an output variable. A continuous– or
discrete–time system is said to be linear if it satisfies the
superposition principle, i.e. [9]:

S[α1x1(t)+α2x2(t)] = α1S[x1(t)]+α2S[x2(t)],

∀α1,α2 ∈ℜ (1)

where S is the system mapping, x1(t) and x2(t) are any
two input signals to the system and α1 and α2 are real
constants (Fig. 1). In the present case, the two input signals
are identical nociceptive laser stimuli that are separated
by the corresponding ISI. Under the assumption of time–
invariance and linearity, these stimuli elicit the same ERP
waveform, time-shifted by the respective ISI. Thus, for
identical impulsive stimuli, (1) can be written as follows:

S[x(t)+ x(t− ISI)] = S[x(t)]+S[x(t− ISI)], (2)

where we have set α1 = α2 = 1, in accordance to our
experimental design.

A. Statistical Methodology

Our tests are applied on a time point-by-time point basis,
where the waveforms are time locked based on the time
of a stimulus application. Let yisk(t) be the kth single trial
output waveform (k = 1, . . . ,nis) from the ith individual (i =
1, . . . ,11) that belongs to the sth ISI category (s = 0, . . . ,4)
at time point t = 1. The subscripts for the ISI categories
correspond to s= 0 (SINGLE), s= 1 (250ms), s= 2 (500ms),
s = 3 (1000ms) and s = 4 (2000ms) while the number (nis)

Fig. 1. Schematic representation of linear and nonlinear in-
teractions between two successive impulsive-like stimuli. When
applied separately, the two stimuli x1(t) and x2(t) elicit the output
waveforms y1(t) and y2(t), respectively (top panel). When the
two stimuli are applied in succession and there is no nonlinear
interaction between them, the total output is simply the addition
between y1(t) and y2(t) (middle panel). On the other hand, when
nonlinear interaction between the two stimuli/responses occurs, the
total output is not equal to y1(t)+ y2(t) (bottom panel).

of single trial ERPs varies for each subject and ISI category.
A time locked averaged waveform is denoted by yis·(t):

yis·(t) =
1

nis

nis

∑
k=1

yisk(t) (3)

For the statistical analysis of the data, we design three
testing schemes which are described in the next section.
In these schemes, we do not use the ERP waveforms yisk
but rather, we form waveforms Yi jk in order to perform
appropriate comparisons between the groups j = 1, . . . ,J and
assess the presence of nonlinear interactions.

Unlike the commonly used and relatively smooth averaged
waveforms, the single-trial waveforms are extremely noisy.
Thus the error variance of the model one chooses to employ
for their analysis should have much larger error variance
compared to models concerning the averaged responses. We
choose to use Mixed Effects Models (MEM) since they
allow the inclusion of multiple variance sources. The MEM
framework allow us to incorporate random effects in the
model. For our application this translates to decomposing the
different variance components. Specifically, in addition to the
error variance, we choose to include an additional variance
term that reflects the variation between the individuals in our
experiment in terms of their ERP waveforms.

The mixed effects model used in our analysis can be
written as:

Yi jk(t) = µ(t)+
J

∑
l=2

βl(t)I[l= j]+ζi(t)+ εi jk(t), (4)

ζ j(t)
i.i.d∼ N(0,σ2

i (t))

εi jk(t)
i.i.d∼ N(0,σ2

ε (t)).
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The error term εi j(t) is a zero-mean Gaussian noise and it
is assumed IID across all subjects and groups. The term
ζ j(t) represents the between subject variance. This term
essentially allows us to assume that each subject has its own
error variance thus also allowing us to model discrepancies
between subjects. I[·] is an indicator function.

The statistical comparisons for the J groups are based
on the coefficients β2, . . . ,βJ . They are utilized for both the
omnibus test (H0 :All β equal) and for the post-hoc, pairwise,
comparisons when the omnibus H0 is rejected. Since the
tests are applied on a time point–by–time point basis a
multiple testing correction is applied the resulting p-values.
Specifically, we use the Simes method [10], [11].

B. Assessment of Nonlinear Interactions

We design three testing schemes (TS) that aim to assess
whether the interactions between ERPs elicited by successive
stimuli are linear. This assessment is based on two principles:
(i) Time invariance and (ii) linear addition of identical but
time shifted ERPs. The three schemes (Table I) we use are
designed to test whether these principles hold in our data.
Note that TS2 is designed based on the results we obtain
from TS1 and TS3 is designed based on the results of the
previous two schemes.

TABLE I
TESTING SCHEMES

TS1: ERPs elicited from successive stimuli with no time overlap.

1) The ERPs from the SINGLE data {Yi1k(t) = yi0k(t)},
2) The first elicited ERP from the ISI=1000ms data; {Yi2k(t) =

yi3k(t)},
3) The second elicited ERP from the ISI=1000ms data; {Yi3k(t) =

yi3k(t +1024)},
4) The first elicited ERP from the ISI=2000ms data; {Yi4k(t) =

yi4k(t)} and
5) The second elicited ERP from the ISI=2000ms data; {Yi5k(t) =

yi4k(t +2048)}.

TS2: Comparison of ERPs elicited by the second stimulus

1) The ERPs from the ISI=250ms, starting from the application
of the second stimulus after subtracting the respective averaged
SINGLE waveform from each individual; {Yi1k(t) = yi1k(t +
256)− yi0·(t +256)},

2) Same as 1, only with data from the ISI=500ms; {Yi2k(t) =
yi2k(t +512)− yi0·(t +512)},

3) Same as 1, only with data from the ISI=1000ms; {Yi3k(t) =
yi3k(t +1024)− yi0·(t +1024)},

4) Same as 1, only with data from the ISI=2000ms; {Yi4k(t) =
yi4k(t +2048)− yi0·(t +2048)},

TS3: Assessment of linear addition by comparing observed and
artificially created ERPs

1) The single trials ERPs from the ISI=ISIs data, where we use
the section 0.75s after the application of the second stimulus;
Yi1k(t + ISIs) = yisk(t + ISIs),

2) The artificially created ERPs with ISI=ISIs, using the averaged
second stimulus waveform from the ISI=ISIs′ data, added to the
SINGLE ERPs; Yi2k(t + ISIs) = yi0k(t + ISIs)+yis′·(t + ISIs′ )−
yi0·(t + ISIs′ ).

TS1 examines whether time invariance holds and whether
any modulation occurs for successive ERPs with no time
overlap that were elicited by identical stimuli. TS2 is formu-
lated under the assumption that the first of the two successive
stimuli elicit the same response for all ISIs in the experiment.
Its purpose is to examine the hypothesis that the ERPs
elicited by the second stimuli are the same, irrespective of the
ISI. In TS3 we assume that modulation might have an impact
on the ERPs elicited by the second stimuli. This scheme tests
whether a waveform elicited by successive identical stimuli
can still be written as an algebraic sum of two ERPs, with
the second being different than the first, due to modulation.
In other words, instead of (2), we have the expression:

S[x(t)+ x(t− ISI)] = SUM[x(t)]+SISI
M [x(t− ISI)], (5)

where SUM is the non-modulated ERP waveform while SISI
M

is the modulated ERP waveform that depends on the specific
ISI.

IV. RESULTS

The omnibus test in TS1 shows that there are significant
differences between the five waveform groups. The time
intervals that these differences are statistically significant,
roughly correspond to the N1 and P2 peaks of the respective
averaged ERP waveforms of those groups. Since the common
practice is to simply use these modes for comparisons, our
results, which take into account the entire bulges are more
substantial and thus provide strong evidence that the five
ERPs are different. The post-hoc comparisons (Fig. 2) pro-
vide a better insight to which of the ERPs from the successive
stimuli trials are different than the ERPs from the single
stimulus trials. There does not appear to be any difference
between the SINGLE waveforms and the ERPs elicited by
the first stimuli in either the ISI=1000ms or ISI=2000ms
waveforms. However both ERPs that were elicited by the
second stimulus appear to be significantly different compared
to the ERPs from the SINGLE data, again mostly in the
regions around the N1 and P2 peaks. From these results, it
becomes apparent that when it comes to the ERPs elicited
by the first stimulus, time invariance holds. However, due to
modulation from the preceding stimulus, the ERPs elicited
by the second stimulus are different from the first ERPs, even
when there is no time overlap.

With time invariance for the first ERPs established, TS2 is
used to compare the ERPs elicited by the second stimulus.
The results from the omnibus test strongly indicate that at
least one of the ERPs is different. Therefore modulation
depends either on the ISI in general or on whether there is
time overlap or not. The post-hoc tests (Fig. 3) that compare
the four waveforms in pairs, reveal that the ERPs elicited by
the second stimulus for the different ISIs are significantly
different between each other. The N1 and P2 modes are
always included in the regions that differ. Based on these
results we can conclude that modulation depends on the ISI.

The results from TS3 reinforce our findings from the
previous tests that compared the ERPs elicited by the second

4545



Fig. 2. Results (corrected p-values) from the TS1 post-hoc tests.
The comparisons are between the ERP waveforms elicited by the
first (Left) and second stimuli (Right) from the ISI=1000ms (Top)
and ISI=2000ms (Bottom) trials to the ERP waveforms elicited
by the single stimulus trial. Unlike the ERPs elicited by the first
stimulus, the ones elicited by the second stimulus yield significant
differences when compared to the single stimulus ERPs.

Fig. 3. P-values for the post-hoc pairwise comparisons of the
four ERP waveform groups used in TS2. All comparisons yield
statistically significant differences.

stimulus. The results (Fig. 4) show clearly that linear addi-
tion, as this is defined by equation (5), holds only when the
averaged ERP that was used to create the artificial data comes
from the data with the same ISI as the observed waveforms
in our comparisons. This shows that modulation depends on
ISI and (5) holds but the ERP waveform SISI

M depends on
the ISI. Thus even though the interactions between ERPs
elicited by successive stimuli are not linear in the traditional
sense, the resulting waveform can still be written as a linear
algebraic sum of two ERPs.

V. CONCLUSIONS

In this paper we have studied the presence of nonlinear
interactions in the ERPs elicited by two successive sensory
stimuli at short intervals, i.e. at intervals where overlap
between successive ERPs may occur. In our study we use
three testing schemes design to assess the assumptions of
time invariance and linearity of the interactions between the
elicited ERPs. Our results suggest that all ERPs that are
elicited by the first stimuli are the same, i.e. these are time

Fig. 4. Test results for the 16 tests in TS3. The colors indicate
the dataset from which the averaged second ERP was obtained, in
order to create the artificial waveforms. Black: ISI=250ms; Red:
ISI=500ms; Green: ISI=1000ms and Blue: ISI=2000ms

invariant. However the ones elicited by the second stimuli
are different, which implies a possible modulation effect.
Moreover, this modulation depends on the ISI. Additionally,
we show that the interactions between ERPs elicited by
successive stimuli are linear in a more broader sense than
the traditional definition. Specifically, if the effect of the
ISI dependent modulation is known, then the interaction can
still be considered a linear sum of an unmodulated and a
modulated mappings.
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