
Estimating Blood Pressure using Windkessel Model on
Photoplethysmogram

Anirban Dutta Choudhury, Rohan Banerjee, Aniruddha Sinha and Shaswati Kundu

Abstract— Simple and non-invasive methods to estimate vital
signs are very important for preventive healthcare. In this
paper, we present a methodology to estimate Blood Pressure
(BP) using Photoplethysmography (PPG). Instead of directly
relating systolic and diastolic BP values with PPG features,
our proposed methodology initially maps PPG features with
some person specific intermediate latent parameters and later
derives BP values from them. The 2-Element Windkessel model
has been considered in the current context to estimate total
peripheral resistance and arterial compliance of a person using
PPG features, followed by linear regression for simulating
arterial blood pressure. Experimental results, performed on a
standard hospital dataset yielded absolute errors of 0.78±13.1
mmHg and 0.59 ± 10.23 mmHg for systolic and diastolic BP
values respectively. Results also indicate that the methodology
is more robust than the standard methodologies that directly
estimate BP values from PPG signal.

I. INTRODUCTION

Affordable health care in developing countries and elderly
health care in both developing and developed countries re-
quire unobtrusive, low-cost devices to estimate physiological
parameters. Blood pressure (BP) is the pressure exerted by
circulating blood, upon the walls of blood vessels. During
each heartbeat, blood pressure varies between a maximum
(systolic; Ps) and a minimum (diastolic; Pd) value. Systolic
blood pressure is the pressure exerted in the arteries when the
heart contracts, whereas diastolic blood pressure is the pres-
sure when the heart relaxes. A very high BP (hypertension)
is an indicator of potential heart attack, arterial damages and
stroke. A very low BP (hypotension) on the other hand may
also lead to heart damages, kidney failure and several other
heart diseases. Thus a regular check up of Blood pressure is
needed for a basic preventive health care.
Invasive BP monitoring is rather uncommon, and generally
takes place in hospital setups [1]. Traditionally, a physi-
cian or a trained medical technician uses combination of
sphygmomanometer and stethoscope, listens for Korotkoff
sounds, and determines the blood pressure levels. Though the
later is a non-invasive procedure, the requirement of skilled
professionals makes the process costly, and in some cases,
regular check-up may become unaffordable.
In the last decade, off-the-shelf digital sphygmomanometers
have flooded consumer market, offering medically unskilled
users an opportunity to measure blood pressure, at virtually
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zero recurring cost. Some of these devices are medical-grade
and aggressive pricing have made them quite affordable. Very
recently, researchers have looked into cuff-less non-invasive
blood pressure measurement with some of the products
claiming FDA approval.1

Photoplethysmography (PPG) is a simple, non-invasive tech-
nique to measure instantaneous blood flow in blood ves-
sels [2]. Affordable commercial devices (pulse oximeter)
are available in market that captures fingertip PPG signal
cleanly in transmissive mode. PPG is commonly used for
the measurement of heart rate (HR), heart rate variability
(HRV) [3] and arterial oxygen saturation (SpO2).
Zhang et al. [4] used ECG as well as PPG waveforms to
estimate BP levels based on the principle of pulse wave
transition by measuring the time lapse between the peak
of the ECG and the trough of the PPG waveform. Chan-
drasekaran et. al [5] have used two sensor signals - PPG
and audio sound of heart beat for BP measurement. A linear
regression based model is created to estimate the systolic and
diastolic BP using the time difference between the peak of
the audio wave and the peak of the PPG signal. However,
the major challenge of this system lies in synchronizing the
two separate sensors (audio recorder and PPG recorder).
Few research works have tried to estimate Ps and Pd using
PPG as their only input. Teng et al. [6] presented certain PPG
features, for estimating human BP using linear regression.
Lamonaca et al. [7] also proposed similar approach using
neural network. Although these methods reported satisfactory
accuracy, they do not physiologically relate PPG features
with the values of Ps and Pd. On the other hand, there are
several electrical [8] and mechanical [9] models available in
literature that accurately simulate pressure wave propagation
through arteries. In this paper, we have targeted the problem
of estimation of Ps and Pd using PPG data through 2-
Element Windkessel model [8]. PPG features of a subject
are used to derive various latent parameters of Windkessel
model that controls human BP.
Rest of the paper is organized as follows, BP wave simulation
using 2-Element Windkessel model is briefly described in
Section II. Section III deals with our proposed methodology
to estimate BP, followed by experimental results and conclu-
sion in Section IV and V respectively.

1http://www.medgadget.com/2013/10/fda-approves-visi-mobile-system-
for-cuffless-non-invasive-continuous-bp-monitoring.html
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II. SIMULATING ARTERIAL BP USING WINDKESSEL
MODEL

A. Windkessel Model

The Windkessel model describes the human cardiovascular
system in terms of an electrical circuit [8]. The model
can mathematically relate blood flow and blood pressure in
arteries. In this analogy, arterial blood flow is described as
the flow of fluid through a pipe. In the simplest form of
Windkessel model (2-Element Windkessel model), the total
peripheral resistance and arterial compliance are modeled as
a resistance (R in mmHg.s/mL) and capacitance (C in
mL/mmHg) respectively. The blood flow from ventricles
to artery is analogous to a sinusoidal electrical current (I(t))
wave and arterial pressure wave is modeled as a time-varying
electrical potential (P (t)).

Fig. 1: Electrical analogy of 2-Element Windkessel model
As the number of elements increase (3 or 4 Element

model), the accuracy of the model increases with an addi-
tional penalty of more unknown variables to deal with. For
simplicity, we have used 2-Element Windkessel model in our
proposed methodology to reduce the number of unknown
quantities to be predicted. The electrical analogy of 2-
Element Windkessel model is shown in Fig. 1. Applying
Kirchhoff Law of Current, we get

P (t)

R
+ C

dP (t)

dt
= I(t) (1)

B. Derivation of Ps and Pd
Without loss of generality, the total blood pumped by heart

during nth cardiac cycle can be expressed (as in Eq.2) as a
sinusoidal function with a peak value of I0 during systole
and zero during diastole.

I(t) =

{
I0sin(

πt
Ts
), (n− 1)Tc < t ≤ (n− 1)Tc + Ts

0, (n− 1)Tc + Ts < t ≤ nTc
(2)

Here Ts is the systolic upstroke time, Td is the diastolic time

Fig. 2: Sample PPG waveform.
and the duration of one cardiac cycle is Tc = Ts + Td. If
Co be the cardiac output of a person2, then for one cardiac

2units of Co and Tc are litre/minute and second respectively

cycle
CoTc
60

= I0

∫ Ts

0

sin(
πt

Ts
)dt (3)

I0 =
CoTc

60
∫ Ts

0
sin( πtTs

)dt
(4)

Now, putting the conditions of Eq.2 in Eq.1 and solving
them, we can form an expression for P (t), which brings us
the following:

Ps = P (t|t = Ts)

= Ptse
−Ts/RC +

I0TsCπR
2

T 2
s + C2π2R2

(1 + e−Ts/RC) (5)

Pd = P (t|t = Td) = Ptde
−Td/RC (6)

Where Pts and Ptd are the initial values of Ps and Pd
respectively. Similarly, R and C can also be expressed as
function of Ps, Pd, Ts, Td and I0 using Eq.5 and Eq.6
respectively.

C. Inputs and Assumptions

We assume that every cardiac cycle starts at systole and
Pts is supplied as 80 mmHg as an initial condition for the
first cycle. For every next cycle this gets replaced by Pd
calculated in the previous cycle. Ptd is assigned to the value
of Ps obtained in that cycle. The ventricular blood flow
and BP waveform of an imaginary subject having heart-
rate of 90 bpm, Ps and Pd of 160 mmHg and 100 mmHg
respectively are shown in Fig. 3. It can be observed that
after few cardiac cycles the waveform gets stabilized to the
desired BP levels. For this example, we have assumed that
Td/Ts = 1.5. Thus the model is capable of simulating any
BP waveform, provided R, C, Ts and Td are known.

Fig. 3: BP simulation using 2-Element Windkessel model for
Ps/Pd = 160/100 mmHg and HR = 90 bpm

As shown in Fig.2 parameters like Ts, Td and Tc can
be accurately calculated from the input PPG signal. For a
healthy adult person cardiac output can be well-assumed
to be 5 litre/min. So I0 can be calculated from this using
Eq.4. However there is no known mathematical relationship
between PPG features and R, C. Physiologically, the R
and C components affect the blood flow in arteries and are
expected to be related with the shape of the PPG waveform
of the subject. So we use machine learning based approach
to estimate R and C from PPG features.
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Fig. 4: Block diagram of proposed methodology

In our proposed methodology (as in Fig. 4), R and C of
the training subjects are first calculated from ground truth
BP values and are fitted to a straight line using their PPG
features in the off-line training phase. During testing, R and
C are first estimated from PPG features of the test subject
and later Ps and Pd are calculated using Eq.5 and Eq.6.

III. PROPOSED METHODOLOGY

Different steps involved in analysing PPG signal for fea-
ture extraction, estimation of R, C parameters and later Ps
and Pd are given in the following subsections.

A. Feature Extraction from PPG signal

Generally a PPG signal is noisy in nature and may contain
a DC component along with some high frequency noise
components. The fundamental frequency of PPG signal is
typically concentrated around 1 Hz (depending upon the
heart rate of the subject). So a bandpass filter having cut-
off frequencies of 0.7 Hz and 3 Hz are used to remove
the undesired frequency components form PPG signal as
part of preprocessing. Later, a set of time domain features
are extracted from each cycle of PPG signal. In our case,
initially we have considered all the features mentioned in
[6] and [7]. Applying the Maximal Information Coefficient
(MIC) based feature selection technique mentioned in [10],
our optimum feature set gets reduced to the following - (1)
systolic upstroke time (Ts), (2) diastolic time (Td), sum of
systolic width and diastolic width at (3) 33% (B33) and (4)
75% (B75) of pulse amplitude for R and C. Heart rate of
the subject is also considered as a feature for C.

B. Outlier Removal

Feature extraction requires an accurate detection of the
peak and trough points from each cycle of the input PPG
data. A misdetection or a false detection of peak or trough
points can lead to wrong feature calculation. Generally the
wrongly detected features (outliers) are either too large or
too small compared to the actual range of the feature values.
In our case, we use the threshold based approach mentioned
in [11] to successfully remove the outlier feature data before
regression analysis.

C. Estimation of R and C from PPG features

R and C parameters are estimated using multiple linear
regression where the PPG features are treated as indepen-
dent variables. In training phase, the regression models are
fitted using least square method to calculate the regression
parameters. These parameters are used for estimation of R
and C of an untrained subject in the testing phase.

D. Estimation of BP values

Ts and Td can be calculated from PPG waveform. Once R
and C are estimated, BP values of the subject are calculated
using Eq.5 and Eq.6 respectively.

IV. EXPERIMENTAL RESULTS

All our experiments were conducted on The University
of Queensland Vital Signs Dataset [12]. It is a standard
hospital dataset containing simultaneously recorded PPG and
BP data for 32 surgical cases, ranging in duration from 13
minutes to 5 hours over a period of 4 weeks, using standard
medical devices. The dataset also contains the fluctuation
of BP values of a person over a long period of time and
hence is an ideal dataset for performance analysis of our
proposed methodology. The pleth data is sampled at 100 Hz.
However, we neglect the instantaneous fluctuation of Ps and
Pd and take their arithmetic mode over a period of 5 minutes
to return a single value for annotation. The dataset is split
into two halves of equal size, one for training and the other
for performance evaluation. The training set is ensured to
contain a wide variation of Ps and Pd values in almost equal
distribution in order to create unbiased training models.
The performance of our proposed methodology is tested
against the two methods mentioned in [6] and [7]. Linear
regression is used as the machine learning tool for all
the three methods for unbiased performance analysis. The
absolute error from ground truth for both Ps and Pd are
reported in the manner of mean ± std in Table I for
performance comparison. Results clearly indicate that our
proposed methodology outperforms methods [6] and [7].

TABLE I: Performance comparison for Ps and Pd in absolute
error (mean± std) and slope of the best fitted straight line
in respective Bland-Altman plots

Ps Pd

Method Ps (mmHg) Slope of
B-A plot
forPs

Pd (mmHg) Slope of
B-A plot
forPd

Method [6] 1.5± 23.3 0.83 1.88± 16.6 1.75
Method [7] 1.17± 19.1 0.7 1.3± 13.6 1.2
Our Method 0.78± 13.1 0.42 0.59± 10.2 0.52

Bland-Altman plot [13] is a well-known method for as-
sessing agreement between two methods of clinical measure-
ments. In Fig. 5 and Fig. 6, we have presented the agreements
of each of the three methods ([6], [7] and our proposed
methodology) against the clinically measured BP values. In
all the plots, the horizontal axis indicates the mean of the
estimated and clinical BP ground truth values, whereas the
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(a) Method [6] (b) Method [7] (c) Proposed method

Fig. 5: Bland-Altman plot for measured Ps w.r.t Ground truth

(a) Method [6] (b) Method [7] (c) Proposed method

Fig. 6: Bland-Altman plot for measured Pd w.r.t Ground truth

vertical axis represents the difference between them. Hence,
a horizontal spread is desired in the Bland-Altman plots, as
it confirms that the concerned methods were tested on varied
range of dataset. Conversely, a vertical spread is not desired
as it would indicate the disagreement with clinical BP values.

We have also plotted the best linear fit for each of
the Bland-Altman plots. A higher slope indicates a higher
disagreement. A very small slope (≈ 0) of the best fitted
straight line in a Bland-Altman plot would indicate that the
respective methods closely match with each other. As shown
in Table I, our proposed method yields lowest slopes for both
Ps and Pd, and hence we claim that the proposed methodol-
ogy outperforms the other two methods, and matches more
closely with clinical method.

In all our cases, we have made an assumption of cardiac
output of each subject as 5 litre/minute. As the current
dataset holds a number of critical surgical cases, there can
be instances where subjects having cardiac output lesser than
that. For such cases there is a chance that the estimated BP
values deviate much from the ground truth. Currently, we are
exploring some non-invasive methods to coarsely estimate
the cardiac output of a person.

V. CONCLUSION

A photoplethysmographic approach to estimate human
blood pressure using 2-Element Windkessel model has been
presented in the current context. Experimental results show
that the methodology of estimating BP via the intermediate
latent parameters of R and C can improve the overall
accuracy. However, 2-Element Windkessel model does not
take into account many internal parameters that affect human
BP. Thus, the method still needs to be validated against 3
or 4-Element Windkessel models along with other standard
models available in literature that simulate human BP more
accurately. The present algorithm is tested on hospital PPG
data, captured using standard medical device which is ex-
pected to be noise-free. Our future challenge lies in running
the same algorithm successfully on noisy reflective PPG

data captured by smart phones, to make the entire system
available as a phone application for BP monitoring.
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