
  

 

Abstract— A real-time stage 1 sleep detection system using a 

low-cost single dry-sensor EEG headset is described. This 

device issues an auditory warning at the onset of stage 1 sleep 

using the “NeuroSky Mindset,” an inexpensive commercial 

entertainment-based headset. The EEG signal is filtered into 

low/high alpha and low/high beta frequency bands which are 

analyzed to indicate the onset of sleep. Preliminary results 

indicate an 81% effective rate of detecting sleep with all failures 

being false positives of sleep onset. This device was able to 

predict and respond to the onset of drowsiness preceding stage 

1 sleep allowing for earlier warnings with the result of fewer 

sleep-related accidents. 

I. INTRODUCTION 

Operator fatigue and drowsiness is a serious safety issue 
in many forms of transportation [1], [2]. Currently, there are 
two approaches to drowsiness detection: driving pattern 
based detection, and eye closure detection. Driving pattern 
based detection is triggered by sensing driver control errors 
that occur due to falling asleep at the wheel. The drawback 
with this approach is that once effects become noticeable, it 
may already be too late to prevent an accident. Alternatively, 
the eye closure detection approach utilizes a vision system to 
track the eyes of a driver to determine if they are closed. 
This approach allows for earlier detection of driver 
drowsiness than driving pattern detection, but it is limited by 
the accuracy of the vision system used to sense eye closure. 

Recent new techniques based on changes in body 
physiology as a function of fatigue are now being used to 
detect the onset of sleep. One such method is the use of 
signals recorded from scalp electrodes that measure patterns 
of changing electrical activity in the brain from a state of 
complete alertness to fatigue and drowsiness. The process of 
recording these signals is known as Electroencephalography 
(EEG). EEG has been used to detect the stages of sleep since 
the 1930s [3]. It has also been clinically used to monitor 
driver and pilot drowsiness [4], [5]. However, these medical 
grade EEG devices are impractical for everyday driver 
drowsiness detection since they require the use of expensive 
equipment and complicated skin preparation with conductive 
gel for effective monitoring. To circumvent this issue, 
commercially available entertainment-based headsets that 
detect EEG signals have recently been introduced. These 
devices use a single dry-electrode to record EEG signal 
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power in select frequency bands (as opposed to medical 
grade EEG that uses multiple electrodes, attached with 
conductive gel and adhesive, to record EEG signal power at 
multiple locations). These simple and cheap systems offer an 
attractive target for research efforts into effective driver 
drowsiness detection systems using EEGs. One such low cost 
EEG headset is the NeuroSky Mindset [6]. This device is 
shown below in Figure 1.  

II. SLEEP DETECTION METHOD 

A. Brain Activity during and preceding Sleep 

Traditional methods of frequency domain analysis of 
EEG activity for studying sleep has centered around four 
major bands of frequencies as shown in Table I. 

TABLE I.  EEG FREQUENCY BANDS FOR SLEEP DETECTION 

Sleep Stage versus Frequency Band 

Stage Band Range 

Adult slow wave Delta <4Hz 

Drowsiness Theta 4–7Hz 

Resting, relaxed Alpha 8–16Hz 

Alert Beta 17–30Hz 

Sleep is broken into four stages. Stage 1 is the transition 
from wakefulness to sleep, during which a person can be 
woken easily, and may not be aware that they were sleeping. 
Here, EEG signals are low amplitude and low frequency. 
During stage 2 sleep, body temperature decreases and the 
heart rate slows. In stage 2, alpha waves are periodically 
interrupted by alpha spindles which are 12-14Hz bursts of 
brain activity that last at least half a second [7]. Stages 3 and 
4 are progressively deeper stages of sleep. Rapid Eye 
Movement (REM) sleep follows stage 4. During REM sleep, 
dreaming occurs and brain activity increases. The sleeper 
continuously cycles through each of these stages throughout 
the sleeping period. 

 

Figure 1.  NeuroSky Mindset Single EEG Headset 
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The majority of brain activity during the transition from 
wakefulness to sleep occurs in the frontal and occipital lobes. 
In the transition from wakefulness to sleep, alpha activity 
moves from the occipital to the frontal lobe. High occipital 
lobe activity is associated with relaxed wakefulness. In 
general, frequencies from 1Hz to 16Hz increase while 
approaching sleep, while frequencies 17Hz and higher 
decrease. This pattern continues after the onset of sleep, 
except that power in the 8–11Hz range begins to increase as 
well. The change in the 8–11Hz signal is especially 
noticeable in the occipital region where the signal diminishes 
and transitions to the frontal lobe [8]. During stages 2-4, 
delta activity in the frontal lobe increases and theta activity 
in the occipital lobe increases [9]. A viable approach is to 
detect sleep onset by observing these changing features in 
the brain during the transition from wakefulness to sleep. 

B. Comparable Sleep Detection Approaches 

One real-time EEG-based sleep detection system focuses 
on three critical parameters in EEG recordings: waveform 
amplitude, waveform frequency, and duration of 
synchronization of the waveform (time the amplitude 
exceeds a detection threshold for a particular frequency 
band) [10]. Settings include a 50µV predefined voltage 
threshold, focus frequencies of 8–12Hz (Alpha) and 11.5–
15Hz (low Beta). Two counters are used to detect the EEG 
threshold crossing: one to track the number of sequential 
pattern matches indicative of sleep; a second counter to track 
the number of sequential non-matches. A frequency, 
amplitude and duration match increments the first counter; a 
non-match increments the second counter. A match count of 
‘3’ indicates sleep while a non-match count of ‘8’ indicates 
wakefulness. This method proved highly accurate in 
detecting alpha-spindle epochs. In addition, the method was 
able to detect about 12.2% more epochs than visual scoring. 
While this method may be modifiable to detect stage 1 sleep, 
the presence of alpha-spindle epochs indicates a deeper stage 
of sleep. Hence, this approach is not currently applicable to 
the detection of sleep onset. 

In another approach, an algorithm was designed for the 
detection of drowsiness in drivers, assuming a gradual 
transition towards sleep [11]. The algorithm classified 
drowsiness/fatigue EEG signals into transitional (early 
fatigue phase), transitional–posttransitional (medium fatigue 
phase), posttransitional (extreme fatigue phase and early 
stage 1 of sleep), and arousal phases (emergence from 
drowsiness). The signal was separated into delta, theta, 
alpha, and beta waves. An EEG baseline was recorded 
before the subject was drowsy. From this baseline, the mean 
and standard deviation for each of the frequency bands was 
computed. The algorithm included coefficients to allow for 
fine-tuning a threshold for each frequency band. A maximum 
threshold was also hard coded to remove outliers. Data were 
analyzed in blocks of thirty seconds and this algorithm 
demonstrated a 10% error rate in sleep detection. 

Both of the above methods utilize a multi-sensor EEG 
configuration. In one study [12], the frequency domain 
analysis of EEG collected from the Neurosky dry-sensor 
EEG device was considered. The frequency content of the 

signal was divided into clinically relevant frequency bands 
alpha, beta, and theta waves. It was expected that, as in 
clinical studies, alpha and beta waves would decrease when 
drowsy and theta waves would increase in stage 1 sleep. The 
investigators found that alpha and beta waves did decrease 
when drowsy, but theta waves remained constant. These 
results suggest that EEG signals obtained from low-cost EEG 
devices like the Neurosky Mindset are useable for 
drowsiness detection schemes. 

C. Our Low-Cost Simplified Sleep Detection System 

We designed a system incorporating the Neurosky 
Mindset, with a single dry-sensor electrode attached to the 
forehead at position Fp1 (see Figure 2. [13]) and grounded 
with three electrodes on the ear (along with supporting 
portable hardware and software) to detect the onset of stage 
1 sleep in real-time. This system records a single EEG signal 
(at 512Hz) and automatically splits the signal into delta (0.5–
2.75Hz), theta (3.5–6.75Hz), low alpha (7.5–9.25Hz), high 
alpha (10–11.75Hz), low beta (13–16.75Hz), high beta (18–
29.75Hz), low gamma (31–39.75Hz), and mid gamma (41–
49.75Hz) frequency bands. The Mindset further makes this 
sampled data available wirelessly through a Bluetooth 
interface for further processing on an external 
microprocessor board. As processed on the external board, 
time-frequency analysis monitors the changes in these bands 
over time. Stage 1 sleep is indicated when the amplitude of 
the raw signal is low, and signal power in higher frequencies 
has been attenuated. The comparable methods previously 
described are now combined in our algorithm to include the 
counting approach of [10] (to reduce false positive assertion) 
combined with the algorithm approach of [11]. Finally, when 
the EEG transitions resemble that of stage 1 sleep, the device 
produces an auditory alarm. 

Initially, and for the first 30 seconds, baseline “wake” 
data is collected to calculate threshold levels. The power in 
each of the frequency sub-bands alpha low (AL), alpha high 
(AH), beta low (BL) and beta high (BH) is calculated, and the 
mean and standard deviation of these power measurements 
are computed. From the mean and standard deviation results, 
thresholds are determined to be used to increment or 
decrement a sleep-indication counter. Six such thresholds are 
calculated for the following frequency bands for both sleep 
and wake states: low alpha sleep (ALST) and wake (ALWT), 
high alpha sleep (AHST) and wake (AHWT), low beta sleep 
(BLST) and wake (BLWT) and high beta sleep (BHST) and wake 
(BHWT).  

 

Figure 2.  Placement of Single Electrode at Fp1 
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The computation of each of the thresholds is similar as 

 bSDbmbMbmbmT XxXxX 21   

where ‘X’ indicates the frequency band (restricted to A-alpha 

and B-beta bands), with ‘b’ indicating L-low or H-high sub-

band and ‘m’ mode (S-sleep or W-wake). XbM and XbSD are 

the particular frequency band X mean and standard 

deviation, respectively, and xbm1 and xbm2 are heuristically 

derived proportionality constants associated with this X 

frequency band, b sub-band and m mode. These 

proportionality constants are determined by relating the 

mean and standard deviation of the wake baseline signal to 

the signal amplitude when sleep is indicated. They are then 

fine-tuned during debugging to improve response time while 

limiting false positives. Once determined, these constants are 

used for each subject without modification. In other words, 

these values need to be fine-tuned for the specific hardware 

and software configuration but are not altered once set. 

Additionally, using the unfiltered EEG data (denoted as 
signal ‘R’), overall “raw” sleep mean (RSTM) and raw wake 
(RWT) thresholds are computed as 

 RrR sSTM 1  

 SDwMwWT RrRrR 21   

Above, RM and RSD are the mean and standard deviation of 

the baseline R signal, respectively, and rs1, rw1 and rw2 are 

similarly derived heuristic proportionality constants. 

Once the baseline is complete and the thresholds 
computed, the EEG raw data and sub-band data are 
compared to their respective thresholds in order to update a 
sleep detection counter at a rate of once per second. The rule 
for the AL signal is summarized as 


LSTL AA

1

  LWTL AA
1

  

which is interpreted as: if AL is less than ALST, increment the 
sleep counter by one; conversely, if AL is greater than ALWT, 
decrement the sleep counter by one. Similar rules based on 
the other signals and thresholds to affect the sleep counter 
are given in the equations below: 


HSTH AA

1

  HWTH AA
1

  


LSTL BB

2

  LWTL BB
2

  


HSTH BB

2

  HWTH BB
2

  


STMRR

7

  WTRR
7

  

When the sleep counter CNT reaches and exceeds a 
predetermined threshold (in our current configuration this 
counter threshold is 35), sleep is declared and the alarm 
asserts. Additionally, the Neurosky Mindset has a feature 
that identifies and flags noisy data. This notification was 

used to validate the baseline computations insuring that only 
low-noise signals were used to create the baseline. Lastly, 
(and in keeping with [11]), a maximum signal threshold 
“max” was used to discard any data with a value 
inappropriately large to help reject artifacts. The constants 
used for this configuration are shown in Table II. 

III. TESTING 

A.  Implementation 

For hardware, the commercially available Arduino Uno 
board serves as the main processor for the data retrieval and 
sleep algorithm analysis [14]. The similarly available 
BlueSMiRF module is the interface between the Neurosky 
Mindset and the Arduino board. Fig. 3 gives the wiring 
diagram showing each hardware component. 

The algorithm was implemented in the C programming 
language on the Arduino. A piezoelectric buzzer sounds to 
indicate that sleep has been detected, producing a 4000Hz 
sound at 70dBA measured at 12 inches from the device 
enclosure. LEDs indicate the establishment of a connection 
to the Neurosky Mindset. The LEDs also indicate the 
progression toward sleep by displaying the current sleep 
counter value. Finally, if a poor connection to the headset or 
poor contact with the scalp is sensed after the baseline has 
been recorded, the alarm is activated to alert the user that the 
device is no longer functional. 

TABLE II.  SLEEP DETECTION ALGORITHM CONSTANTS 

Constant Name and Value 

Name Value Name Value Name Value 

1LSa  7.0  
1HWa  7.0  

1HSb  0.1  

2LSa  0.0  
2HWa  0.0  

2HSb  53.0  

1LWa  8.0  1LSb  0.1  1HWb  9.0  

2LWa  0.0  
2LSb  57.0  

2HWb  0.0  

1HSa  6.0  
1LWb  9.0  

1Wr  0.3  

2HSa  0.0  
2LWb  0.0  

2Wr  0.0  

CNT  35  max  0.300  
1Sr  6.0  

B. Test Protocol 

Three subjects were tested in two different sleep 
positions, lying down and seated. Only tests which 
concluded in a false positive or actual sleep were recorded; 
those tests for which the subject remained awake and the 
alarm did not activate were discarded. The subjects were 
informed that they needed to stay awake for a few minutes to 
record baseline values. Once the baseline was recorded, they 
were encouraged to fall asleep. Subjects were given the 
option of trying to immediately fall asleep or wait until they 
felt drowsy. 

IV. RESULTS 

A. Sleep Detection Effectiveness 

A total of 16 tests were run using the three test subjects. 
For these 16 tests, drowsiness was correctly detected in 13 or 
81% of the cases. In 10 cases, the sleep algorithm indicated 
sleep an average of about 8.4 seconds after stage 1 sleep was 
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Figure 3.  Hardware Configuration of Sleep Detection System 

inferred by manually observing the EEG data and monitoring 
the test subject’s appearance. In two cases, the sleep 
algorithm indicated sleep an average of about 38 seconds 
before stage 1 sleep was visually inferred. In another case, 
the sleep algorithm indicated sleep about 13 minutes into a 
33 minute session in which stage 1 sleep was never clearly 
identifiable from visually observing the EEG data.  

In three cases, the sleep algorithm indicated sleep before 
the subject had begun to attempt to sleep; these cases were 
considered false positives. These false alarms tended to 
occur almost immediately after the baseline was recorded. 
Here, the signals registered fairly high levels following the 
baseline period but dropped suddenly while the subject was 
awake but attempting to sleep. Finally, it was found that the 
baseline values in all cases of false positive were higher than 
other, correctly functioning tests. 

B. Validation 

To validate the algorithm, three EEG datasets (for which 
sleep occurred) from an electrode at position Fp0 from 
physionet.org were used [15]. This data includes defined 
sleep assertion time points. Following filtering to separate 
into low alpha, high alpha, low beta, and high beta frequency 
bands, the data was processed by our detection algorithm. 
The results from processing this control data closely 
mirrored the results from real-time live testing.  

For all of the control datasets, sleep was detected, but 
arguably too early. On average, the algorithm indicated sleep 
approximately 120 seconds before clinical results indicated 
sleep. A comparison between the clinical reference time 
point and the algorithm performance is given below in Table 
III. 

TABLE III.  COMPARISON OF CONTROL SLEEP DETECTION TIME AND 

DERIVED DETECTION TIME 

Stage 1 Sleep Detection Time Point 

Dataset Derived (s) Control (s) Error (s) 

one 968 1226 258 

two 1046 1106 60 

three 724 766 42 

 

C. Conclusion 

The stage 1 sleep detection algorithm herein presented 

shows potential for use as a simple, low-cost drowsiness 

detection system. The major deficiency of the algorithm is 

the false positive assertion of stage 1 sleep for about 20% of 

the test cases. Examination of these problematic cases has 

identified that the critical baseline data used in creating the 

thresholds tends to larger values with higher variance. These 

differences may be due to variability of the subject’s 

alertness at the start of test (drowsy versus alert) and other 

arrangements such as test subject position. The variability of 

the baseline data suggests that improvement in obtaining the 

baseline thresholds will directly translate into reduction of 

the false positive rate. Furthermore, the possibility of offline, 

long-term calibration of each subject’s baseline thresholds 

stored and accessed on an as-needed basis is promising. 

Lastly, further use of the control data [15] will provide a 

highly reliable source for improved algorithm development. 
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