
  

 

Abstract— In this paper, a diagnosis algorithm for 

arteriovenous fistula (AVF) stenosis is developed based on 

auscultatory features, signal processing, and machine learning. 

The AVF sound signals are recorded by electronic stethoscopes 

at pre-defined positions before and after percutaneous 

transluminal angioplasty (PTA) treatment. Several new signal 

features of stenosis are identified and quantified, and the 

physiological explanations for these features are provided. 

Utilizing support vector machine method, an average of 90% 

two-fold cross-validation hit-rate can be obtained, with 

angiography as the gold standard. This offers a non-invasive 

easy-to-use diagnostic method for medical staff or even patients 

themselves for early detection of AVF stenosis. 

I. INTRODUCTION 

End-stage renal disease (ESRD) is widespread around the 
world in recent years. [1] For those suffering from ESRD, 
hemodialysis is the most common treatment. Blood is 
withdrawn from the patient’s body, purified by a hemodialysis 
machine, and then returned to the patient’s vein. As the blood 
volume for hemodialysis treatment is typically too large for 
vein to handle, surgeons usually create an arteriovenous fistula 
(AVF) as a vascular access which connecting an artery and a 
vein. The pressure difference between the artery and the vein 
would enlarge the vein, which made it a suitable vascular 
access for hemodialysis treatment. 

Since AVF is not a natural passageway for blood 
circulation, the friction between the blood and the vessel wall 
would cause abnormal narrowing of the vessel, which is called 
venous stenosis. Venous stenosis is the most common AVF 
complication, which may cause thrombosis and eventually 
induce myocardial infarction or cerebrovascular embolism. 
An early stage AVF stenosis can be released by percutaneous 
transluminal angioplasty (PTA), but a complicated surgery is 
required if the stenosis becomes severe. Therefore, the early 
detection of AVF stenosis appears to be an important issue.  

Typical methods for AVF stenosis diagnosis include 
angiography, color-duplex ultrasound, and physical 
examination. Angiography is considered the golden rule for 
AVF stenosis diagnosis, but this method is not only invasive, 
expensive, but also has serious side effects. Color-duplex 
ultrasound is a non-invasive method, but it needs to be 
performed in hospitals. Physical examination can be 
performed by a skilled operator by auscultation and palpation 
[2]. When stenosis occurs, the turbulence flow creates audible 
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sound which can be identified by the physician. However, a 
skilled operator is still required for such evaluation. 

Previous works have discussed several AVF stenosis 
diagnosis algorithms based on acoustical detection [3]-[10]. 
Typically, electronic stethoscopes are used for data 
acquisition. Then the sound data is analyzed and classified. 
The feature extraction algorithm plays the most important role 
in such system. Previous research based on various signal 
characteristics, such as the energy of high band signal [3]-[6], 
the energy distribution of the signal, the envelope of the 
time-domain waveform [8]-[9], the S-transform of segmented 
signal [10], etc. Besides, most of the data sets in previous 
works are not large enough to develop a diagnosis system for 
stenosis occurring in different positions, different levels of 
severity, and different patients. Due to the complexity and 
variance of stenosis morphology, several major difficulties 
remained to be solved. The following are three primary 
difficulties when developing a feature extraction algorithm for 
AVF stenosis diagnosis. 

1) Stenosis may have different levels of severity, and thus 
corresponds to different signal characteristics. For 
moderate stenosis, there is high-pitched sound at the 
site of stenosis. In very severe cases, there is no audible 
sound. 

2) The signal feature differs from patient to patient 
because the angle at AVF junction is different. A 
slightly change of the angle at AVF junction may cause 
very different signals in fistula. 

3) Stenosis may occur in any position in the fistula. The 
stenosis position is unknown a priori, so the 
measurement point should be pre-defined for 
predictive diagnosis. 

In this paper, new signal features being able to overcome 
the above-mentioned three difficulties are identified and 
quantified. Additionally, the physiological mechanical 
explanations of the features are provided. Utilizing the 
algorithm accompanied with an electronic stethoscope, the 
diagnosis of AVF stenosis can be performed easily, increasing 
the possibility for early detection.  

II. METHODOLOGY 

A. Data Acquisition 

The AVF signals were measured by 3M Littmann 3200 
Electronic Stethoscope with sampling rate of 4000Hz. Each 
measurement was of 15 seconds and was collected by a trained 
clinical assistant. 22 patients undergoing PTA treatment 
participated in this study. Both the signals before and after 
PTA treatment were collected. Among these patients, three of 
them underwent PTA treatment twice and one of them 
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underwent three times during our data collection period. 
Totally 54 data sets were collected. This procedure was 
reviewed and approved by the Research Ethics Committee of 
National Taiwan University Hospital. 

    For each data set, five points were measured and 
collected. The measurement positions were pre-defined and 
consistent for all patients and can be identified by outward 
appearance of the fistula. The measurement points were 
defined as shown in Fig. 1, which were anastomosis (point 1) 
and 2 cm proximal and distal to the two puncture sites 
connected to the hemodialysis machine (point 2-5). For the 
patients with arteriovenous grafts (AVG), the sixth point was 
measured at the connection of the graft and the vein. 

The angiography data during the PTA treatment was 
collected and examined by the physician. All patients before 
PTA treatment had over 50% of stenosis, so the pre-PTA data 
sets were all defined as abnormal cases. For the post-PTA 
cases, four data sets had residue stenosis more than 50%. 
These four data sets were considered poor cases and excluded 
from our study. Other post-PTA measurements had residue 
stenosis less than 50%, and were considered as normal cases. 
Totally 50 data sets with normal or abnormal label identified 
by angiography were used as the gold standard diagnosis 
result. 

B. Feature Extraction 

The feature extraction algorithm is developed based on 
physical examination procedure. The diagnostic 
characteristics of physical examination are summarized in 
Table I. from [2].  

On the basis of audio signal processing and physical 
examination, the characteristics for fistula stenosis can be 
classified to the following four symptoms. 

 Symptom 1: Lower energy in normal frequency band or 
higher energy in ultra-low frequency band 
This symptom occurs when the stenosis is highly 
severe; namely, the AVF is blocked. There is no audible 
sound when the AVF is totally blocked and a palpable 
vibration in ultra-low frequency band may present as the 
blood flow reflected by the resistance. 

 Symptom 2: Systolic only / water-hammer / 
discontinuity 
If the flow only presents in systolic phase but not in 
diastolic phase, it implies that the peripheral resistance 
is higher than normal. This suggests that there is stenosis 
in the fistula. The discontinuous sound or water-hammer 

sound is therefore a diagnostic feature for stenosis. 

 Symptom 3: High frequency 
Higher frequency implies higher velocity of the blood 
flow. At the site of stenotic point, the abnormal 
narrowing of the passageway leads to faster blood flow, 
hence higher frequency of the signal can be defined as a 
diagnostic feature.    

 Symptom 4: Harmonic sound (seagull murmur) 
Seagull murmur sound is a diagnostic feature for fistula 
stenosis in physical examination procedure. Although 
widely consider a high-pitched sound, our research 
found that seagull murmur is rather a harmonic sound, 
which may be caused by turbulent flow.  

Each symptom can be quantified by the following features. 

 Feature for Symptom 1 

The time domain waveforms of signal with symptom 1 and 
normal AVF signal are shown in Fig. 2. Short-time Fourier 
transform (STFT) by Hamming window with frequency 
resolution of 3.9Hz and time resolution of 0.13 second was 
applied to generate the spectrogram shown in Fig. 3. The 
resolutions in time and frequency domain are high enough to 
extract useful time-frequency characteristics of the sound 
signal. The average energy in each frequency band is 
calculated, and the extreme values are excluded since noise 
may present in the measured data. To identify the signal with 
symptom 1, i.e. lower energy in normal frequency band or 
higher energy in ultra-low frequency band, the ratio of the 
energy between the frequency band of less than 50Hz and the 
frequency band of 100Hz~200Hz is calculated. This is the first 
feature for the proposed AVF stenosis diagnostic signal 
processing. 

 

 
 

Figure 1. The measurement points. 
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TABLE I.  PHYSICAL EXAMINATION 

Physical Findings of Venous Stenosis 

Parameters Normal Stenosis* 

Thrill 
Only at the arterial 

anastomosis 
At the site of 

stenotic lesion 

Pulse Soft, easily compressible Water hammer 

Bruit 

Low pitch 

Continuous 

Diastolic and systolic 

High pitched 

Discontinuous 

Systolic only 
* Abnormalities listed are for the two extremes: completely normal and severe stenosis. 

With lesser degrees of stenosis, the changes will be intermediate. 

Significant stenosis tends to toward the characteristics of a severe lesion. 

 
Figure 2. The time domain waveforms of signal with symptom 1 (upper) 

and normal (lower) AVF signal.  
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 Features for Symptom 2 

The spectrograms of the signal with water-hammer sound 
and normal AVF signal are shown in Fig. 4. Although one can 
tell the differences between normal and water-hammer sound 
by their spectrograms immediately, the diagnostic feature for 
signal processing is not easy to be quantified from the 
spectrogram. Thus, energy-time plot is considered. To 
eliminate the high energy effect in very low frequency band, 
the measured signal is filtered by an A weighting filter based 
on 40-phon Fletcher-Munson equal-loudness [11] contour 
before energy calculation. The A weighting filter simulates 
human perception to the sound by equalizing the energy in 
different frequency band. So the energy-time function and the 
center of frequency function calculated by this method would 
be close to human perception to the sound. The energy-time 
plot and the center of frequency plot are shown in Fig. 5 and 
Fig. 6. For water-hammer sound, the center of frequency 
differs a lot in systolic and diastolic phase, thus the variation 
of center of frequency can be defined as a diagnostic feature to 
specify water-hammer signal from normal signal. 
Additionally, the variation of the product of center of 
frequency and energy can extract the abruptness of the 
emergence of the sound signal, which is another useful feature 
to diagnose systolic or water-hammer sound.  

 Feature for Symptom 3 

Using the center of frequency calculated in the above part, 
the mean of the center of frequency can be another diagnostic 
feature for AVF stenosis. Based on symptom 3, higher signal 
frequency may indicate the narrowing of blood flow 
passageway. If the mean of the center of frequency is 

abnormally high, it implies that there is a stenosis point near 
the measurement point. 

 Feature for Symptom 4 

The seagull murmur can be distinguished easily by human 
ear, but relatively hard to extract by signal processing. The 
time-frequency character of seagull murmur sound is shown in 
Fig. 7. Although seagull murmur sounds like a high-pitched 
signal, our data shows that it is not in the highest frequency 
band of the signal. Rather, it is more likely a harmonic sound 
caused by the resonance of the turbulent flow. However, the 
flow pattern cannot be seen by angiography, so we do not 
integrate this feature into our classification system. 

In summary, the features of the proposed diagnostic 

algorithm are as following: 

1. The energy ratio between 0-50Hz frequency band and 

100-200Hz frequency band. (Symptom 1) 

2. Variation of center of frequency. (Symptom 2) 

3. Variation of the product of energy and center of 

frequency. (Symptom 2) 

4. Mean of center of frequency. (Symptom 3) 

C. Classification 

The aforementioned four features are calculated from each 
measured signal for all time and rescaled by an exponential 
function, optimizing the weighting of each feature. The 
features in the same data set are combined together. Then, a 
subset of the features is chosen and fed into the classifier. 
Support vector machine (SVM) with Gaussian radial basis 
kernel function (RBF) is used for classification in our system 
[12]-[15]. Two-fold cross-validation is performed for 100 

 
Figure 3. The spectrogram of signal with symptom 1 (upper) and normal 

(lower) AVF signal. (red: high energy, blue: low energy). 

 

 
Figure 4. The spectrogram of signal with water-hammer sound (upper) 

and normal  (lower) AVF signal. (red: high energy, blue: low energy)  

 

 
Figure 5. The energy-time plot of signal with water-hammer sound 

(upper) and normal  (lower) AVF signal. 

 

 
Figure 6. The center of frequency of signal with water-hammer sound 

(upper) and normal  (lower) AVF signal.  

 4621



  

times, that is, choosing half data sets randomly to develop the 
classifier and use the other half data sets to test the average 
hit-rate of the classifier for 100 times. There is no overlap 
between the test sets and the training sets. This procedure is 
implemented to prevent model over-fitting. 

III. RESULTS AND DISCUSSION  

    Our research result shows that the measured signals at 
point 1 (AV junction), point 5, and point 6 for AVG are not 
discriminative for AVF stenosis. For point 1, the possible 
explanation is that the signal in AV junction depends largely 
on the angle between the artery and vein. Thus, the signal 
feature differs from patient to patient, and cannot be a general 
feature for stenosis diagnosis among all kinds of patients. As 
for point 5 and 6, the flow is generally too weak to be 
discerned.  

Signal at point 4 is the most discriminative for AVF 
stenosis detection. Choosing the features of point 4 as the 
subset fed into our classifier, an average two-fold 
cross-validation hit-rate of 84.3% can be obtained. This means 
that the system correctly tell 84.3% of the test signals whether 
they belong to the pre-PTA group (stenosis > 50%) or the 
post-PTA group (stenosis < 50%). Additionally, adding 
features of other points to the sub set fed into the classifier can 
improve the average hit-rate up to more than 90%.  The 
sensitivity is 86.2% and the specificity is 95.2%; and the 
positive predictive value is 96.2% and negative predictive 
value is 83.3%. This result shows that this algorithm is an 
excellent computer-aided diagnostic tool for AVF stenosis 
detection.  

Back to the three feature extraction difficulties mentioned 
in section I. The first difficulty is eliminated by our 
multi-feature classification algorithm. The second difficulty 
can be solved by choosing point 4 as measurement point, 
which depends less on AVF geometry. Finally, for the third 
difficulty, no matter stenosis occurs at any position of the 
fistula, one of our proposed signal features of point 4 would 
change accordingly. Therefore, our proposed system can be 
used for AVF stenosis diagnosis in a very general situation. 

IV. CONCLUSION 

In this paper, a physiology-based computer-aided 

diagnostic algorithm for AVF stenosis detection is developed 

with satisfying performance. The advantage of our system is 

that the classification model is based on large data set with 

cross-validation and is highly consistent with angiography. 

Also, the diagnostic features follow from physical 

examination, which has physiological meaning and 

mechanistic explanation. This diagnosis algorithm provides a 

useful tool for early detection of AVF stenosis for ESRD 

patients. 
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Figure 7. The harmonic sound/ seagull murmur/ turbulent flow in 

spectrogram.  
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