
  

 

 

Abstract— In this work, an attempt has been made to 

differentiate sEMG signals under muscle fatigue and non-

fatigue conditions using multiscale features. Signals are 

recorded from biceps brachii muscle of 50 normal adults 

during repetitive dynamic contractions. After prescribed 

preprocessing, each signal is divided into six segments out of 

which first and last segments are considered in this analysis. 

Multiscale RMS (MSRMS) and Multiscale Permutation 

Entropy (MSPE) are computed for each subject in the time 

scales ranging from 1 to 50. The median values of the MSRMS 

and MSPE are calculated for further analysis. The results show 

an increase in amplitude for sEMG signals under fatigue 

condition. MSRMS values are found to be significantly higher 

in fatigue. An approximately constant difference in MSRMS 

value between fatigue and non-fatigue condition is observed 

over the entire time scale with a negative slope. Further, the 

median of MSRMS values for each subject is able to distinguish 

fatigue and non-fatigue conditions. Similar analysis on MSPE 

showed significant difference between fatigue and non-fatigue 

cases and lower values of MSPE is observed in fatigue. It is also 

observed that the median value of MSRMS and MSPE are able 

to distinguish these conditions. t-test for MSRMS, MSPE and 

their median value show high statistical significance. It appears 

that this method of analysis can be used for clinical evaluation 

of muscles.  

 

I. INTRODUCTION 

 

Muscle fatigue is a neuromuscular condition in which 

muscle fails to produce required force [1]. Although muscle 

fatigue occurs in normals, it is also experienced in certain 

abnormal conditions, such as Parkinson’s disease [2], 

endocrine disturbances [3], Guillain–Barré syndrome, 

Pompe disease and immobilization [4]. Recent researches 

suggest that the analysis of fatigue can help in diagnosis of 

the progression of neuromuscular disorders [5]. Analysis of 

muscle fatigue also plays a vital role in the fields of 

ergonomics, sports medicine [6] and rehabilitation [7].  

 

The sEMG signals are widely used to study the behavior 

and dynamics of muscles in fatigue conditions. Various 

signal processing methods based on time, frequency, time-

frequency distributions are employed in muscle fatigue 

assessment. The time domain features, such as root mean 

square value, average rectified value and frequency domain 

features namely median frequency, mean frequency and 
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peak frequency have been used in fatigue analysis. Also, 

time-frequency method based features, such as instantaneous 

median frequency, mean frequency and spectral moments 

are used [8 - 10].  

 

Frequency and time-frequency methods are limited in 

single time scale analysis [11]. Multiscale analysis is a 

technique, which transforms the time domain signal into 

different time scales by down-sampling or coarsegrain 

method [12]. Similar to the theory of wavelets, multiscale 

analysis includes subtle details of time series at different 

time scales. It facilitates the isolation of brief events in 

discrete time scales [13]. Wu et al. (2013) has applied multi-

scale sample entropy, multiscale permutation entropy, multi-

scale root-mean-square and multi-band spectrum entropy for 

ball bearing defect diagnosis [12]. 

 

Studies conducted by Gao et al. (2007) on monkey’s 

neuronal activity suggests that the use of multiscale methods 

for the spiking pattern analysis would bring out the inherent 

distribution of energy at different time scales [14]. Features 

extracted from temporal structure of signals are important in 

differentiating normal and pathological conditions [15]. 

Goldberger et al. and Costa et al. have reported that analysis 

of signals in terms of several time scale components 

provides information about the complexity of physiological 

variable [11, 16]. It has been shown by Cashaback et al. 

(2013) that multiscale Shannon entropy analysis of sEMG 

signals under fatigue conditions is able to quantify the 

complexity associated with the physiological variable [15]. 

 
In this work an attempt is made to study the dynamic 

behavior of sEMG signals of biceps brachii in fatigue and 
non-fatigue conditions. The signals are analyzed using 
multiscale RMS (MSRMS) and multiscale permutation 
entropy (MSPE). The median of the MSRMS and MSPE are 
calculated. These features are further used to differentiate 
sEMG signals under fatigue and nonfatigue conditions.  

II. METHODS 

A. Signal Acquisition and Experimental Protocol 

In this study, sEMG signals from 50 healthy volunteers 
with no history of neuromuscular disease are recorded. The 
subjects were informed about the study and a written consent 
was obtained. Ag-AgCl surface electrodes are fixed on the 
bulk of the biceps brachii muscle after skin preparation. The 
inter electrode distance is kept as 3 cm. The electrodes are 
connected to Biopac MP36 system (24 bit resolution, CMRR 
110 db) in bipolar configuration. The signals are acquired at a 
sampling rate of 10 KHz. 

Multiscale Feature Based Analysis of Surface EMG Signals under 

Fatigue and Non-fatigue Conditions 

Navaneethakrishna M and Ramakrishnan S 

Non Invasive Imaging and Diagnostics Laboratory  

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 4627



  

The subjects are made to stand erect on an insulated 
platform. Each participant is requested to perform the biceps 
curl exercise using their dominant hand. The subjects are free 
to select the cycle frequency and encouraged to continue the 
experiment until they are unable to lift the load again [8]. 

 B.  Preprocessing 

The acquired signals are preprocessed offline with a band 
pass filter of range 10 Hz – 400 Hz and a 50 Hz notch filter 
[8]. To normalize the time axis the signal is divided into six 
equal segments. The first segment corresponds to the signal 
after the start of dynamic contraction and the last segment is 
the signal acquired before task failure. These two segments 
are considered for the study as they indicate non fatigue and 
fatigue segments respectively. 

C. Multiscale Root Mean Square  

Multi-scale RMS is the RMS of the signal at multiple 
time scales. In this method the input signal is converted to a 
new time series of reduced length based on the coursegrain 
formula. A moving average based scale reduction is 
performed on the signal to give a new time series of the 
length N/ts where N is the length of signal and ts is the time 
scale. The new time series is split into 250ms windows and 
the RMS value is calculated. This is performed for 
compensating non-stationarity of the signal. The mean of the 
RMS (mRMS) value is calculated and is used for analysis 
[12, 17]. 

Also, the median value of mRMS across different time 
scales is computed and is used for further analysis. 

The coursegrain acts as a moving average filter without 
overlap. This is calculated using the expression given  
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where,   
   is the associated time series at scale   , x is the 

original time series and j=1,2,…N/  . 

Root mean square value provides the energy related 

information and is calculated as follows, 
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where,   is length of the series and  ( ) is the time series. 

D.  Multiscale Permutation Entropy 

Similar to the MSRMS the coarsegrain time series is 

constructed and to that newly computed time series 

permutation entropy is computed [12]. 

 

The permutation Entropy (PE) is computed as follows, 
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 ( ) represents the relative frequency for the permutation   
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E.  Statistical Analysis 

The statistical significance (paired t-test) of the RMS and 

PE at each time scale is found out using MATLAB. The 

median value across time scale is calculated for analyzing 

the distribution of energy values across all subjects. 

III. RESULTS AND DISCUSSION 

Figure 1 shows a representative sEMG signal recorded from 

biceps brachii muscles during curl exercise. Depending on 

the subjects endurance limit the signal duration is observed 

to vary between 30 s to 90 s. The fatigue and non-fatigue 

zones are not distinguishable due to the complex nature of 

the signal. This may be due to the derecruitment of several 

motor units and non linear firing patterns.  

For consistent analysis, among the six uniform segments, 

the zones under fatigue and non-fatigue conditions are 

considered and are shown in Fig.2 and Fig. 3 respectively. 

An individual observation on both the zones does not give 

enough information on fatigue and non-fatigue conditions. 

However, on close observation among most of the subjects, it 

is observed that the amplitude of the signals under fatigue 

cases is comparatively high. This may be due to increased 

firing rate of motor neurons and recruitment of more motor 

units. 

Fig. 4 shows the MSRMS value of the representative 

signal shown in Fig. 1.  

The obtained energy variations across the time scale are 

able to differentiate fatigue and non-fatigue conditions. It is 

found that the difference between the MSRMS values of 

fatigue and non-fatigue condition is maintained 

approximately constant throughout the time scale. The same 

trend is observed with all the subjects considered in this 

study.  

The reduction in magnitude with respect to time scale is 

observed in both the cases. This may be attributed to the fact 

that the energy is proportional to the number of samples 

considered in that time scale.  
 

To quantify MSRMS values across the time scale, the 

median values are considered for each subject pertaining to 

fatigue and non-fatigue conditions and are shown in Fig. 5. 

The median values of MSRMS are low in all non-fatigue 

case whereas the same in fatigue are high despite the 

dispersion in the data values. Further, the spread in the non-

fatigue data are found to be low whereas the spread is high in 

fatigue case which can be due to the varying degree of force 

produced by the subjects.  
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Figure 1.  sEMG obtained under dynamic contractions 

 

Figure 2.  Representative Non-fatigue signal  

 

Figure 3.  Representative Fatigue signal 

 

 

 

 

 

Figure 4.  Representative variation of MSRMS with Time Scale 

 

Figure 5.  Variation of MSRMS Median values 

 

Figure 6.  Variation of MSPE with Time Scale of the representative signal 
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Figure 7.  Variation of MSPE Median values among the considered        

subjects 

 

The MSPE gives the variation of the permutation entropy 

based on time scale. There is a sharp increase in the PE value 

in the initial time scale and later on the values become a 

constant. Further it can be seen that the entropy value of the 

non-fatigue is higher which may be due to the reduction in 

complexity in the fatigue case. 

For further analysis the median value of MSPE across 

subject are computed and is shown in Fig. 7. It found that in 

most of the subjects the median value is higher in non-

fatigue. It is also observed that the fatigue median value has 

more variance. 

The calculated mean and standard deviation of median 

values of MSRMS are found to be significantly reduced in 

non-fatigue condition. The inverse is true for the median 

values of the MSPE. The calculated P-value of the median of 

MSRMS and MSPE show that they are highly significant (p 

< 0.0001). The median value is found to be comparatively 

consistent in non-fatigue condition.  

IV. CONCLUSION 

The sEMG signals varies largely in fatigue conditions due 

to several factors, such as recruitment of fast twitch muscle 

fibers, nonlinear motor unit recruitment, synchronization of 

motor units, recruitment and de-recruitment of active motor 

units in the vicinity of recording electrodes and the 

movement of innervation zone [18]. It may be due to 

anthropometric variations, such as muscle size and muscle 

mass.  

In this work, the sEMG signals in fatigue and non-fatigue 

conditions are analysed using multiscale parameters, such as 

MSRMS and MSPE. The results show a significant variation 

in the values of MSRMS and MSPE in the two zones. 

Median of MSRMS and MSPE are also able to differentiate 

the output conditions. The t-test scores for both of these 

features are found to be highly statistically significant 

(p < 0.0001). It appears that this method is useful for the 

identification of fatigue in various clinical conditions. 
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