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Abstract— Local descriptors coupled with robust methods for
learning visual dictionaries have been a pivotal tool in computer
vision. Although the identification of similar patterns is com-
monly conducted on some stage of the bag-of-words framework,
a prior assessment of spatial local similarities can be indicative
of specific objects, and thus improved recognition rates. In
this work we delve a function of similarity for enhancing the
discriminative power of local constrained SIFT descriptors.
Motivated by gastrointestinal images where diagnosis through
endoscopy plays a decisive role in cancer detection and resulting
prognosis, visual cues in these early stages are slim and of
difficult perception. In order to capture these patterns we
propose a self-similarity approach (based on a neighbourhood
analysis of SIFT descriptors) to assess local variances through
a weight function. Based on extensive simulations our approach
achieved a performance of 88%: 3% higher than the standard
SIFT, 10% higher than Haar wavelet and 13% higher than
LBPs.

I. INTRODUCTION

Over the course of the years different Computer Vision
methods have been devised to improve the understanding
(and recognition) of scenes and objects [1]–[3], or, for
instance, tissues and biological structures in biomedical
domains [4], [5]. Biologically inspired vision methods (e.g.,
SIFT, HMAX or HOG [1], [6]), mid-level descriptors (e.g.,
Fisher vectors, VLAD [7]), signal processing (e.g, wavelets,
curvelets [8]) or machine learning formulations are some of
the recent works that have been proposed [9]. Above all,
Scale-invariant feature transform (SIFT) is one of the most
used descriptors and continues to prove its robustness.

Global descriptors such as wavelets and curvelets are
commonly employed in gastroenterological images [8], [10].
However, local patterns and their variations cannot be cap-
tured by these methods. Another way is to explore micro-
textures with local binary patterns (LBP) and their varia-
tions [11]. Images from the gastrointestinal track have spa-
tially constrained features that are indicative of the degree of
the deformation that cannot be captured as a whole. Although
local descriptors such as SIFT have been explored to capture
these pattern changes [12], their straightforward application
is insufficient. Considering that similar patterns are only
identified in posterior phases of the learning process in this

*We acknowledge PEST-OE/EEI/LA0008/2013 (GEMINI), I-City for
Future Health: NORTE-07-0124-FEDER-000068 and Future Cities FP7
Project (grant agreement 316296) for providing funding for this work.

1Instituto de Telecomunicações da Universidade do Porto mcoimbra at
dcc.fc.up.pt

2Instituto de Engenharia Biomédica, Universidade do Porto
ricardo.sousa at ieee.org

3CINTESIS/Faculdade de Medicina da Universidade do Porto and the
Instituto Portugues de Oncologia Porto, Portugal mario at med.up

work we devise an approach to measure SIFT descriptor
resemblance. Motivated by gastroenterology images where
visual cues can be feeble and tissue structures of difficult
perception in relation to the tissue pathology, here we explore
functions sufficiently robust to capture similar patterns and
sensible enough to tolerate marginal differences. We extend
and generalize the work proposed by Tamaki et. al. in [4]
by exploring the SIFT descriptor for the analysis of local
similarities. A neighborhood of densely sampled SIFT’s are
pairwise compared based on different functions with the
purpose to evaluate similarities. By ascertaining local and
neighborhood information, dissimilar bins of the descriptors
will be put far apart from similar ones. This process eases
posterior tasks of the quantization and recognition process
as we will see in our experimental study.

II. RELATED WORK

Global descriptors have prevailed for the analysis of gas-
troenterological tissues [10], [13], [14]. In [13] it is studied
the capability of texture descriptors such as Gray Level
Difference Matrix (GLDM) to describe the different varia-
tions in magnified endoscopy images. In Riaz [10] Gabor
filter banks are coupled with autocorrelation matrices for
texture description to enforce shift and rotation invariances.
In [5] a semantic analysis in the feature space applied to
confocal laser endomicroscopy (CLE) is proposed. Analysis
of local features has been increasingly researched in recent
years [1], [2]. In [4] a local similarity function was explored
to assess different patterns in spatially constrained regions of
SIFT descriptors. In [12] it was explored how the different
multiclass strategies for SVMs affect the recognition of
cancer recognition in gastroenterological images.

The presence of given patterns in an image aids the
recognition task of pathologies as it has been consequently
proven in several of different studies in the gastroenterology
medical domain [13]. However, much of the existing works
either concentrate their efforts in extracting visual relevant
information that can aid in describing the information under
analysis, or in the development of learning algorithms that
can mimic physicians reasoning by discriminating the dif-
ferent pathologies that there may be present. In fact, local
image processing techniques have not been comprehensively
explored in the context of gastrointestinal images. In the
following Sections we will pave the way for a successful
usage of these techniques.
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III. LOCAL IMAGE DESCRIPTOR SIMILARITY FOR
CANCER RECOGNITION

It is known that SIFT [1] continues to prove its robustness
in the detection and description in very different set of
problems. Conventionally, to obtain the SIFT descriptor
we start by detecting the interest points determined by an
invariant feature detector (LoG or DoG) [1]. Then, following
a BoW approach, the quantization of the descriptor (provided
by an unsupervised method such as K-Means) is conducted.
In the end, we obtain a dictionary (or texton) that will be
(generally) representative of the dataset in order to build the
final representation that will serve as input for a learning
algorithm, usually SVM [12]. In the following sections we
will motivate the reasoning of the similarity analysis prior to
the vocabulary construction and generalize our approach.

A. Capturing Local Patterns with SIFT

SIFT although being very popular is often criticized and
its usage is usually opted out by simpler approaches such
as LBP [11]. LBP is a simple method which attains very
impressive results. We start by comparing the standard SIFT
with the LBP. In a nutshell, LBP compares, in a neighbor-
hood with a predefined shape and size (e.g., square, circle or
other defined by the user), the gray values of the neighbor
pixels with the value of the pixel centered in that region. The
comparison results in a binary code of the neighborhood [11].
Triggs in [3] presented a generalization for LBP, but many
other variations exist [11], [15]. For simplicity of this study,
we will keep to the standard implementation [11]. Regarding
SIFT, ideally it suffices to obtain samples over different
interest points (e.g., salient points). However, due to high
variability on the mucosa and optical deformations, this will
not accurately represent the existing pattern. As it was shown
in [16] in more generic databases (revisited afterwards by
other authors in gastroenterology related works [4], [12],
[17]) a dense sampling provides more robust results since
it can represent more comprehensively the data. A direct
application is however limitative due to the low visual cues
that these images have. One recent tactic either uses dense
SIFT features over the whole image or analyzes adjacent
regions [4], [17]. In [4], a low-level local analysis was
conducted by assessing the differences of two adjacent SIFT
descriptors (dSIFT). Indeed, a similar idea was explored in
a more generic way by LeCun [9] in what they have called
as “SIFT macrofeatures”. The rationale is to capture low-
level descriptors and encode them jointly. Whereas dSIFT
may be sensible to high variances thus generating very
different descriptors for similar patterns, the second one
may prove too computational expensive or render descriptors
highly dependent of their spatial coordinates. Albeit, the
major drawbacks are that differences are linearly assessed
and image resemblances are delegated to posterior (learning)
stages. Postponing to a BoW approach and classification
methodologies can be ineffective due to 1) the variability
of patterns within the same image; 2) valuable information
which can be lost during the quantization process [18]–[20].

Fig. 1: Resulting histograms when calculating the differences be-
tween two adjacent SIFT descriptors.

In order to remove such ambiguities we will extend the
difference similarity by a more general function. We will
basis our descriptor analysis by using an exponential function
where descriptor bins similarity will decay according an ex-
ponential function. Here we can benefit of the local variances
to assess similarities of the SIFT descriptors. Intuitively,
repetitive patterns along these regions would produce sim-
ilar SIFT descriptors being analogous for irregular regions.
Our strategy encompasses measuring histogram magnitude
through a bin-by-bin analysis around a neighborhood with
predefined size. This should maximize the discriminative
power of the descriptor by separating points with higher
differences even farther in the feature space. The weight
function thus result in:

g(x) = αexp(β(255−|si− s j|))+ γ (1)

s corresponds a bin of a SIFT descriptor. Parameter values
of Equation (1) were analytically determined by setting the
maximum possible bin difference (e.g., for the standard
normalized SIFT this value will be 255) to be equal to 0 and
equal bins values to 0. Based on straightforward algebraic
operations, we thus achieved the following values for α = 1,
β = 0.0217 and γ = −1. We obtain the new descriptor as
follows:

1: Input: ppp as list of keypoints and sss as the SIFT de-
scriptors corresponding to the keypoints ppp, respectively
(|ppp|= |sss|).

2: wSIFT←{}
3: for each pi ∈ ppp do
4: T ←{p j|d(pi, p j)< threshold,∀p j ∈ ppp, j 6= i}
5: for each p j ∈ T do
6: w′← Apply Equation (1) for si and s j
7: wSIFT ← wSIFT ∪ L2-norm(w′)
8: end for
9: end for

10: Return wSIFT
We have defined the threshold as 3/2 of the step size of the
grid sampling. A simple experiment with larger thresholds
did not report improved performances and the additional
computational cost is negligible.
Normalization: Descriptor normalization is one issue
(among many others—see [18] for more details) that can
provide feeble recognition performance ratios if improperly
conducted. Some works report better performances when
features are normalized with a L2-norm [18]. However,
other normalization schemes exist such as the sign squared
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root (SSR). To obtain a descriptor x SSR normalized one
needs to transform it to sign(x)

√
|x|, performing after a

L2-normalization. The squared root has the advantage to
discount bins with high energy [7].

IV. EXPERIMENTAL STUDY

Dataset: Our dataset consists of 176 images manually
annotated by a clinical expert with clinical relevant regions
identified. This dataset is encompassed by 56, 96 and 24
cases for normal, metaplasia and dysplasia cases, respectively
(see [21] for more information).

Results and Discussion: In order to assess the advan-
tages on using our descriptor, in our experimental study we
compared it against LBP, Wavelet with a Haar filter1.We
followed a rigorous simulation by splitting our data randomly
in two sub-sets: 20 instances per class for training set and
the remainder was used to generate the testing set. A 3-fold
cross-validation was performed over the training set in order
to find the best parameterization of our models. Performance
was assessed on the testing data using the mean average
performance (mAP). Simulations were repeated 10 times to
obtain more stable results by averaging the mAP.
Image preprocessing and Feature Acquisition: Each image
was rescaled to 259× 240 pixels to smooth interlace and
other image artifacts. Afterwards, a non-linear median filter
of size 3× 3 was also applied for improved noise removal
and to avoid blurred regions. Local descriptors were densely
sampled on a grid spaced by 10×10 pixels [16] acquired all
over the annotated regions of our images.
Dictionary Construction: To build our dictionary, we used
an unsupervised K-Means with K centroids.2 The visual
vocabulary (centroids of the K-Means) was trained on the
training data and the dictionaries were obtained through
average pooling [9]. The tradeoff between small and large
dictionaries renders more generic or more specific represen-
tations of our datasets, respectively3 [12].
Learning the model: For the LBP and SIFT based methods,
SVM was modeled according an intersection kernel [12].
Regarding the wavelet descriptor we set a polynomial with
degree 3 as kernel. The C parameter was comprised between
C = 10−3 and C = 102 with a step size of 10 (C is a penalty
factor for each misclassified point) [23] and γ ranging the
same interval for the polynomial kernel.

Based on the aforementioned configuration for our experi-
mental study, we centred the analysis of these descriptors on
the performance over the binary problem: recognizing pre-
neoplastic and neoplastic tissues.

Our first experiment consisted on assessing the impact on
using different scales for SIFT. Table I shows the expected
increase of the performance with the usage of multiple scales.
Another analysis is that using the standard SIFT with a
single scale outperforms the standard LBP (a multi-scale
LBP expressed feeble differences). This small test elucidates

1We have used as features the entropy and energy to represent the global
statistics of images. In future works we will study other derivations.

2VLFeat toolbox was used to assist our study [22].
3We have experimented larger dictionaries with feeble differences.

mAP
LBP8 75.5±5.4

multiscale
8x8 8x8, 4x4 8x8, 4x4, 2x2

SIFT 79.0±1.9 81.8±3.6 81.6±2.4

TABLE I: Preliminary results comparing LBP with SIFT. We can
see that using multi-scales improves the results as expected and that
SIFT with single scale provides better results than the LBP.

us for the fact that SIFT can capture the relevant information
for recognizing pathologies in more than 3 out of 4 patients.
We can also depict that LBP, although being designed to
capture micro-textures, it performance was 4% inferior to
the baseline SIFT with a single scale. In the following
experiments we will use SIFT with three scales due to the
low variance illustrated in these preliminary results.

Our next experiment consists on validating the benefit on
using the wSIFT. To assess the quality of our results we will
refer as “significantly different” based on a paired two sided
t-test if the different between two results being compared are
statistically significant with 5% of statistical confidence [24].
We have marked our results with a H symbol to represent
that a method shows a statistically degradation than the result
of the SIFT; and with a • to mean that a method performed
statistically better than the result of the SIFT.

Method mAP
SIFT 81.7±2.4 -
dSIFT (difference) 80.2±2.4 H
dSIFT (difference, SSR) 83.5±3.3 H
wSIFT (weigth function, SSR) 84.9±2.6 •

TABLE II: Results for different similarity functions with vocabulary
size K = 100.

By analyzing Table II we can see that using the difference
as a function of similarity gave statistically worse results than
SIFT. At the same time, our function performed statistically
better than the baseline. The SSR normalized weight function
also statistically outperformed the difference approach. These
results render the following knowledge: the normalization
process of the new feature descriptors is crucial; and the
function to pairwise compare the SIFT descriptors provide
very distinct results. Based on these results, we will follow
our experimental study with our weight function with SSR.

Our last experiment was with different dictionary sizes.
Table III summarizes this analysis. Results presented in

mAP
Wavelet (haar) 78.4±4.3

Dictionary Size
K = 100 K = 400

SIFT (baseline) 81.7±2.4 85.4±3.0
wSIFT 84.9±2.6 88.7±3.3 •

TABLE III: shows the Mean Average Performance for SIFT and
wSIFT in comparison to LBP and wavelets.

Table III show very distinct performances improvements by
using SIFT with wSIFT outperforming all other methods.
Confusion Matrix (CM): To conclude our analysis remains
to see how these results reflect in terms of CM. These CMs
represented in terms of Sensitivity and Specificity give 82%
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Fig. 2: Images describing different types of patterns from the gastrointestinal tract and that are illustrative of our dataset: (left) normal,
(center) dysplasia and (right) metaplasia.

CM(SIFT) =
[

0.89 0.11
0.18 0.82

]
CM(wSIFT) =

[
0.87 0.13
0.10 0.90

]
Fig. 3: Confusion Matrix for SIFT and wSIFT.

and 89% respectively for SIFT, and 90% and 87% for wSIFT.
As expected, wSIFT improves the Sensitivity although it
affects to some extent the Specificity. In a computer aided
diagnosis system these results should be read as follows:
a given patient suffering cancer will be positively detected
more likely by wSIFT than SIFT descriptors; whereas, a
patient with no health condition will be erroneous identified
as a pathological patient more likely by wSIFT.

V. CONCLUSION
Here we have explored the usage of similarity functions to

generate low-level descriptors capable for improving discrim-
inability between pre-neoplastic and neoplastic tissues. With
this work it was not our objective to show which computer
vision methodologies are preferable to analyze pathological
tissues in gastroenterological images. Indeed, we have shown
that despite the advancements made, there is much space for
improvements. In future works it would be very important
to assess how clinical experts perform for the same set
of images. This would clearly elucidate the boundaries of
automatic computer vision methods.
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