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Abstract— In this paper, we present a new active contours
model to segment human leg bones in computed tomography
images that is based on a variable-weighted combination of local
and global intensity. This model can split an object surrounded
by both weak and strong boundaries, and also distinguish very
adjacent objects with those boundaries. The ability of this model
is required for segmentation in medical images, e.g., human leg
bones, which are usually composed of highly inhomogeneous
objects and where the distances among organs are very close.
We developed an evolution equation of a level set function
whose zero level set represents a contour. An initial contour is
automatically obtained by applying a histogram based multi-
phase segmentation method. We experimented with computed
tomography images from three patients, and demonstrate the
efficiency of the proposed method in experimental results.

I. INTRODUCTION

Image segmentation is to decompose an image into several
regions with similar properties, such as shape, color, or inten-
sity, etc. In this work, we are interested in the intensity based
segmentation. It is a fundamental task for image processing
and computer vision, and required in various applications,
such as medical, biological, and industrial fields. Images
from real applications, e.g., human leg bones in medical
images, are usually highly inhomogeneous, which means
the distribution of intensity in each object is not regular.
It causes one object to have both weak and strong bound-
aries irregularly, which generates dappled boundaries. And
the distance among objects with dappled boundary is very
close that necessitates a delicate segmentation model. Many
successful segmentation models [1]-[5] for inhomogeneous
images have been developed. They all use local approxima-
tions of intensity inside and outside the contour so that they
can deal with image inhomogeneity. But they do not work
for images containing an object with dappled boundaries,
and also cannot distinguish the adjacent objects with dappled
boundaries, which is not appropriate for segmentation of leg
bones in computed tomography(CT) images. An elaborate
segmentation of leg bone is needed for an accurate surgical
planning in anterior cruciate ligament reconstruction. To
overcome the limitation of previous methods, we propose
a new active contours model that uses a variable-weighted
combination of both local and global approximations of
intensity inside and outside the contour. And we apply a
histogram based multi-phase segmentation method [6] to the
given three-dimensional data in order to automatically obtain
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an initial contour for the proposed segmentation method.
Through experimental results, we will demonstrate the ef-
ficiency of the proposed method for automatic segmentation
of leg bones in CT images.

II. METHOD

Let f : Ω× {1, · · · ,m} ⊂ R2 ×N → R be a given CT
data, where m is the number of sliced images in a volume
data. Before segmentation procedure, we first adjust the
data intensity in order to suppress intensities of background
regions outside bones; f (x,y,z) = 0 if f (x,y,z)< 0, and the
effect can be observed in Fig. 1. In CT images, the hounsfield
unit(HU) of bones range from 80 to 200, and very weak
bones have the values close to 80HU. In order to distinguish
the background and those bones, we use the value of 0 not
80 in image adjustment. The left image is original and the
right image is the result of adjustment.

Fig. 1. Example of adjustment of image intensity.

A. Histogram Based Multi-phase Segmentation Method

Given a data f , we can construct its histogram g : D =
[min( f ),max( f )] → R by counting the number of pixels
contained in each bin. In [6], Kim et al. proposed a method to
find the number of different regions automatically by using
one-dimensional histogram, and performed a region-based
segmentation on the given data with information obtained
from the histogram. They observed that the number of
meaningful local maxima in a histogram reflects the number
of different regions on an image. The goal is to decompose
a domain D of an initial histogram into several subdomains
of D and the remaining set Q. Each subdomain Di contains
the global maximum of the i-th histogram that is obtained
by removing from the first to (i− 1)-th histogram from
the original histogram. The necessary information of the
removed histogram was extracted through the previous steps.
The set Q is the domain of the (n+ 1)-th histogram such
that maxs∈Qg(s) is very small compared to the original
histogram, or Q is empty. This is a redundant set in searching
a meaningful local maxima because such regions associated
with very small histogram values are usually useless in image
segmentation. Then, the number of different regions is n.
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To find each subdomain Di containing the global max-
imum of the i-th histogram, they repetitively conduct the
standard 2-means clustering under some rules below. For
an image histogram, the 2-means clustering problem is
described as

argminR1,R2

2

∑
j=1

∑
s∈R j

g(s)(s− r j)
2,

where each center r j is computed by r j =
∑s∈R j s g(s)

∑s∈R j g(s) for

j = 1,2. And the suggested rules are as follows:
• Rule 1. choose a cluster

R∗ =

{
R1 if maxs∈R1g(s)> maxs∈R2 g(s)
R2 otherwise

• Rule 2. |argmaxs∈R1g(s)−argmaxs∈R2g(s)|< ω1

• Rule 3. maxs∈D−∪i−1
j=1D j

g(s)< ω2 meanD(g)

The first rule explains that we select the cluster containing
the larger maximum histogram value between two clusters,
R1 and R2; and we apply the 2-means clustering only to
the selected cluster again. We repeat this procedure until the
second rule is satisfied, and then we get the i-th subdomain
Di of D. The parameter ω1 represents the least difference
in intensities of distinct regions, which assures that the
regions with similar intensities are not split according to
ω1. In our experiment, we used ω1 = 10 or 20. In the
last rule, meanD(g) is the average value of the original
histogram, and maxs∈D−∪i−1

j=1D j
g(s) is the maximum value

of the i-th histogram which is the reduced histogram after
finding i−1 subdomains Di. The parameter ω2 prevents from
finding too small local maxima compared to the original
histogram, which denotes usually unnecessary region to be
segmented. We used ω2 = 0.1 in this application. If the last
rule is satisfied, the process with histogram is accomplished.
From this procedure, we automatically get the number, n, of
distinct regions and the n subdomains {Di}n

i=1.
After then, the region-based segmentation by level set

function is performed to allocate the regions corresponding
to Q and compensate the coherence of regions. In each
subdomain Di, a center di is computed by di =

∑s∈Di s g(s)
∑s∈Di g(s) , and

an initial level set function is defined as a labeling function;

φ(x,y,z) =


1 if f (x,y,z)≤ d1+d2

2
i if di−1+di

2 < f (x,y,z)≤ di+di+1
2

n if dn−1+dn
2 < f (x,y,z)

(1)

for 2 ≤ i ≤ n − 1. The authors suggested a fast and
simplified segmentation algorithm as follows: in each region
{(x,y,z) : φ(x,y,z) = i} ⊂Ω×{1, · · · ,m} for 2≤ i≤ n,

update φ(x,y,z) = i−1 when
ci−1 + ci

2
< f (x,y,z),

where

ci(φ) =

∫ m
1
∫

Ω
f {H(φ − i)−H(φ − (i+1))}∫ m

1
∫

Ω
{H(φ − i)−H(φ − (i+1))}

.

Here, the function H(η) equals 1 if η ≥ 0 and equals 0
if η < 0. Clearly, the constant ci is the average value of
intensities f in each region {(x,y,z) : φ(x,y,z) = i}.

B. Proposed Method

From the histogram based multi-phase segmentation
method, we have n-labelled data. According to the property
of desirable objects, the region of interest can be chosen
differently by setting the different number of label. In our
experiments, we set the label l0=2. We define an initial
function u for an elaborate segmentation as follows:

u(x,y,z) =

{
+1 if φ(x,y,z)≥ l0
−1 otherwise.

For the unity of parameters in all sliced images of one
volume data, we fill the hole of each initial function in the
two-dimension. Then we make the initial contour {(x,y,z) :
u(x,y,z) = 0} surround the desirable objects by blurring the
filled initial function, and binarizing it into +1 and -1, also
denoted by u. Fig. 2 shows the results of the histogram based
multi-phase segmentation method and their corresponding
initial functions. The first column is the adjusted data on
intensity, and the second column is the result of the multi-
phase segmentation method for the first column data. And the
yellow contours in the last column indicate the initial con-
tours, i.e., {(x,y,z) : u(x,y,z) = 0)} automatically obtained.
These initial contours are the good initializations for all
slices which lead fast convergence as well as the correct
segmentation.

Fig. 2. Histogram based multi-phase segmentation method and automati-
cally obtained initial functions

So far, we have a given three-dimensional CT data
f (x,y,z) : Ω×{1, · · · ,m}→R and an initial level set function
u(x,y,z) : Ω×{1, · · · ,m} → [−1,+1] derived from the his-
togram based multi-phase segmentation. A new method for
delicate segmentation is developed for each sliced image by
fixing z0 ∈ {1, · · · ,m}, and we denote f (x,y) : Ω×{z0}→R
and u(x,y) : Ω×{z0} → [−1,1]. We introduce two forces,
global and local forces, by following the idea of Zhang et
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al.[3], and then suggest a variable-weighted combination of
the two forces. First, a global force is defined as

Fg(x,y) = f (x,y)− α1c1 +α2c2

α1 +α2
, (2)

where two parameters α1 and α2 are positive such that
α1 +α2 = 2. Here, c1 is the average value of f in {(x,y) :
u(x,y) > 0} and c2 is the average value of f in {(x,y) :
u(x,y) < 0}. Since c1 and c2 are global averages, the force
Fg has itself a global property. An evolution with the global
force is very fast and easy, but cannot segment correctly
an image with both strong and weak boundaries, because it
depends only on the global average values.

Local information, such as the distribution of intensities
in a small neighborhood, is necessary in order to deal with
weak boundaries. The local force Fl is defined similarly to
the global force Fg as

Fl(x,y) = f (x,y)− β1s1(x,y)+β2s2(x,y)
β1 +β2

, (3)

where two parameters β1 and β2 are positive such that β1+

β2 = 2. The functions s1(x,y) =
Gσl ∗[H(u)⊗ f ]

Gσl ∗H(u) and s2(x,y) =
Gσl ∗[(1−H(u))⊗ f ]

Gσl ∗(1−H(u)) are smooth approximations of f inside and
outside the zero level set of u. The notations ∗ and ⊗ de-
note the convolution operator and the element-wise product,
respectively. Here, Gσl is a Gaussian kernel with standard de-
viation σl which determines the locality. Since two functions
s1 and s2 are local average values, Fl has a local property.
The different values of β1 and β2 affect location details
of the contour. By solving an evolution equation with the
local force Fl , we can find local details. However, since the
strength of the local force is very low in the smooth region,
the final contour may be stuck in wrong locations or retain
undesirable fractions over the smooth region, which degrades
the evolution rate and segmentation quality.

We have found that evolution with the global force is very
fast, but fails to extract local details, while local force based
evolution captures stained boundaries successfully, but with
very slow computation and undesirable fractions. Hence, we
suggest a new force F that integrates the advantages of Fg
and Fl . We observed that in practice, each pixel requires
different weights for each force, which means that some
pixels need to put more weight on the global force, while
others require more weight on the local force.

As an indicator of different weights, we introduce a
variable weight function W : Ω⊂ R2→ R

W (x,y) = | f (x,y)−mean(N f
h (x,y))|, (4)

where N f
h (x,y) = { f (x̃, ỹ) : (x̃, ỹ) ∈ [x− h,x + h]× [y−

h,y+ h]} for a positive integer h. This represents the local
difference in intensity between f and the local average
mean(N f

h (x,y)). A high value of W (x,y) indicates the local
edge where the intensities change rapidly in a neighborhood
centered at (x,y). The ability to find a local edge is required
to capture a dappled boundary successfully. A low value of

W (x,y) signifies the local smoothness that the intensities vary
smoothly in a neighborhood. We note that a two-dimensional
neighborhood is used in the computation of W . If a three
dimensional neighborhood is used, strong edges in the upper
or lower slices might interrupt the capture of weak edge in
the present slice.

Two objectives in constructing the new force F are as
follows. (i) In a region where the values of W are low, we use
the global force. (ii) In a region where the values of W are
high, we use the local force. If W is low, the local variance of
intensity is small, so it does not need to be observed locally.
Thus, we can use the global force in a locally smooth region.
On the other hand, if W is high, the local variance of intensity
is large. This necessitates the use of the local force to observe
the local details not captured by the global force. From the
objectives, we define a local-global force F with a variable
weight W as

F(x,y) =
α(1−W (x,y))Fg(x,y)+βW (x,y)Fl(x,y)

α +β
.

The local force in the region where W is large enables
the capture of weak boundaries, and the global force in the
region where W is small prevents undesirable fractions in
the segmentation. The variable weight function W indicates
which force should be used with more weight for each pixel.
Using the variable weight W enables us to extract necessary
information and suppress unnecessary information relating
to Fl and Fg.

We also observe that even if one of the parameters α or
β vanishes, the other force does not affect all of the pixels
as much as original values of that force would. For example,
even if F is dominated by Fl by setting α = 0, Fl will have
less impact on the region where the value of W is low, but
will have more impact on the region where the value of W
is high. Thus, even though the local force Fl is used in the
smooth region, the low value of W discounts unnecessary
information about Fl , the cause of undesirable fractions in
smooth regions.

Ideally, W takes the value one on local edges and zero in
locally smooth regions. But, in practice, W has relative values
in the neighborhood of each pixel, so the difference in W
between local edges and locally smooth regions may be much
smaller than one. In this case, the two auxiliary parameters
α and β are chosen as different values to accentuate the
difference, for example, α = 0.1 and β = 1.9.

We construct the final evolution equation by adding
smoothing term ∆u of u and restricting the evolution region
to the neighborhood of contours with |∇u|:

∂u
∂ t

(x,y) = (F(x,y)+µ∆u(x,y))|∇u(x,y)|,

F(x,y) =
α(1−W (x,y))Fg(x,y)+βW (x,y)Fl(x,y)

α +β
.

(5)

The algorithm is as follows.
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Require given data f , initial u, and parameters
for z = 1, · · · ,m

Compute a variable-weight function W using (4)
repeat

(i) Compute a global force Fg using (2)
(ii) Compute a local force Fl using (3)
(iii) Compute a total force F and update u

using (5)
(iv) Implement u = (u > 0)− (u < 0) and u = u∗Gσ ,

where Gσ is a Gaussian kernel with a standard
deviation σ to regularize u

until |unew−uold |< ε

end

III. EXPERIMENTAL RESULTS

We experimented with CT data from three patient and our
programming environment for all experiments is Matlab 8.0
on a 3.5 GHz Intel i7 personal computer. The original image
was clipped to save the computational time but containing
all two-dimensional bones, and those sizes are indicated
in the second column of Table 1. Common parameters of
the proposed method for all data is as follows: dt = 300,
σl = 5, h = 10, and α = 0.05. If α , α1, and β1 are chosen,
the corresponding values β , α2, and β2 are automatically
determined by: β = 2−α , α2 = 2−α1, and β2 = 2− β1.
The different parameters are shown in Table 1 and we also
present the computational cost in CPU time for each data.
The value t1 is a time for the histogram-based segmentation
method, and the value t2 is for the new segmentation method.

TABLE I

data size µ σ α1 β1 t1 t2
1 256×297×293 0.01 1.5 0.9 1.2 56.3s 1104.5s
2 328×324×421 0.01 1.2 1 0.8 97.9s 1803.2s
3 319×385×351 0.02 1.5 0.9 1.2 38.5s 1971.4s

We illustrated some elaborate segmentations of the pro-
posed method in Fig. 3. The first column shows the images
to be segmented, and the second column is the segmentation
results. In the last column, we plotted the zoom of regions
in the green boxes of the first and second columns, which
demonstrates the efficiency of the new method. And we
also reconstructed the surface from the segmented data, as
displayed in Fig. 4. The proposed model can perform a
correct segmentation of objects with both strong and weak
boundaries as well as split the adjacent objects in detail. We
will implement with more database, and prove the robustness
of parameters and accuracy of segmentation in future work.
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