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Abstract— Recent studies on methylomes have indicated that
low-methylated regions (LMRs) are related to potential active
distal regulatory regions. To further investigate the potential
relation between LMRs and gene expression regulation, we
propose a penalized logistic regression model to predict gene ex-
pression directional change based on computationally analyzed
transcription factor binding sites in LMRs that are distinctive
between two cell types. We evaluated this approach using the
whole genome bisulphite sequencing and RNA-seq data of two
cell types: adipose-derived stem cells and iPSCs of adipose-
derived stem cells. For Differentially Expressed (DE) genes
with LMRs in their intergenic and/or genebody regions, our
model obtained a 10-fold cross-validated AUC value of 0.88 for
prediction of expression directional change. For DE genes with
only LMRs in intergenic regions the corresponding AUC value
is 0.84.

I. INTRODUCTION

The application of the whole genome bisulphite sequenc-
ing (WGBS) technology has led to the identification of low-
methylated regions (LMRs) in a methylome of a particular
cell type [1], [2]. LMRs reside in the CpG-poor regions
with an average methylation level of 30% and occur mostly
distal to promoters. These regions are strongly enriched
for chromatin features such as DNase I hypersensitivity,
high H3K4 monomethylation (H3K4mel) signal relative to
H3K4 trimethylation (H3K4me3) and the presence of p300
histone acetyltransferase [1], which are indicative feature of
enhancers [3]. These facts imply that some of the LMRs
are active distal regulatory regions. In addition, the binding
of transcription factors (TFs) to DNA was found necessary
to create LMRs [1], [4]. These findings suggest that this
unique DNA methylation feature could be used as a means
to detect the distal enhancer regions from which TFBSs
could be identified to infer the regulatory mechanism. The
detected LMRs in one sample could be compared with that
in a different sample to identify differential LMRs (dLMRs).

Common approaches for characterizing methylation
changes between two samples were proposed before [6], [7],
[8], where a sliding window is used to identify differentially
methylated regions (DMRs). It has been shown that there
is a weak anticorrelation between gene expression level and
the level of methylation in the DMR near the promoter of a
gene. A recent work has revealed a diverse set of patterns of
methylation level that are strongly associated gene expression
[9] using a more sophisticated analysis of methylation change
in windows of various size around the transcription starting
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sites (TSSs) of genes. However, non-promotor DMRs seem
to cover more genomic regions [5].

Our current work is based on the hypothesis that the
dLMRs between two samples are associated to gene ex-
pression changes between the two samples. If the dLMRs
indeed include active distal regulatory regions, it would be
meaningful to explore regulatory elements and to evaluate
the usefulness of this information in prediction of the gene
expression. Towards this goal, we propose to use a penalized
logistic regression model to address the following question,

• Can we predict gene expression change using the com-
putationally analyzed TFBSs in the dMLRs?

II. MATERIALS AND METHOD

A. Detection of cell-type specific LMRs

The first step in WGBS data analysis is to align the
bisulfite converted reads and quantify the methylation level
for individual Cytosines(C) in the genome. This analysis can
be accomplished by using packages such as Bismark [11].
The methylation percentage for each C is defined as the
ratio of the number of alignments with C (methylated), over
the number of alignments with either C (methylated) and G
(unmethylated). This quantification provides the methylome
of a sample. The LMRs are detected from the analysis
of methylome using the package MethylSeekR [2]. The
identified LMRs are associated to the nearest genes using
ChIPpeakAnno [12]. As we stated before, LMRs are active
regulatory regions which may have a role in regulation of
expression of the genes.

The next step is to identify dLMRs between two sample
groups. The dLMRs are defined as LMRs in one sample type
that do not overlap with the LMRs in the other sample type.
In addition, if some dLMRs are associated with a single gene
and the corresponding LMRs are from different samples, then
those dLMRs and genes are excluded from further analysis.
By completing this procedure, we identify a set of genes that
are associated with dLMRs detected from each sample type,
but not both.

B. Identification of TFBSs in dLMRs

To assess the potential regulatory effect of dLMRs on gene
regulation, we exam the relationship between the predicted
TSBSs and the gene expression change between two samples.
First, the Position Weight Matrices (PWMs) are used to
predict the TFBSs in each dLMR. The statistically significant
TFBSs in individual dLMRs are determined based on empiri-
cal distributions of similarity scores obtained from randomly
generated sequences. More specifically, the frequencies of
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DNA nucleotides are calculated from the identified dLMRs
and used to generate random background sequences with
a 0-order Markov model. The PWMs are used to scan the
random sequences to obtain empirical distributions of sim-
ilarity scores for individual PWMs. The significant TFBSs
for each PWM are identified with a prescribed threshold for
p-values adjusted by the Bonferroni procedure. If there are
several significant TFBSs for a single PWM in a dLMR,
then the mean value of similarity scores of all these TFBSs
is considered as the similarity score for the PWM in the
dLMR.

In this study we use the 123 non-redundant Homo sapiens
PWMs released in 2014 JASPAR database [13]. The choice
of non-redundant PWMs eliminates the complications where
multiple PWMs may represent a TF, or a PWM represents
multiple TFs. Therefore, in the remainder of the paper,
PWMs or TFs are used interchangeably. The prediction of
TFBSs is carried out by using the Bioconductor package
PWMEnrich [14]. We generate 1, 000 random sequences of
1, 000bp long. The threshold for the adjusted p-values is
0.05.

C. Identification of DE Genes

Since the number of replicates is usually small in RNA-
seq data, the Bioconductor package NOISeq is chosen for
the identification of DE genes between two cell types [15].
Briefly, short read counts for genes are converted into Reads
Per Kilobases per Million (RPKM), and genes with RPKM <
1 are filtered from further analysis. The NOISeq empirically
models the noise in count data and is reasonably robust
against the choice of standard deviation (SD). The DE genes
are defined as those with probability (≥ 0.8) of being
differentially expressed given expression log ratio (M) and
absolute value of difference (D) [15].

D. Penalized Logistic Regression Model for Prediction of
Direction Change of Gene Express

The penalized logistical regression model is used to eval-
uate the association between the TFBSs identified in dLMRs
and the direction change of gene expression. We take a
subset of DE genes that are associated with at least one
dLMR. The number of genes is denoted as Ng . Each gene
is assigned a similarity score for each PWM based on the
scanning results described above. If a gene has multiple
dLMRs, the maximum of the scores from all the dLMRs
is used as the similarity score for that gene. If a PWM does
not have significant TFBS in a dLMR, the similarity score
is 0. This information can be organized into a matrix X of
size Ng × NTF , where NTF denotes the number of PWMs
involved. In addition, let Y be the vector of the labels for
genes, i.e., Yi = 1 if gene i is up-regulated and Yi = 0
if down-regulated with the reference sample types. Now we
can model the gene expression labels by using the logistic
regression model as follows,

log
Pr(Yi = 1|Xi)

Pr(Yi = 0|Xi)
= Xiβ + β0, i = 1, ..., Ng (1)

where Xi is the ith row of matrix X; β is a column vector of
coefficients. The logistic regression coefficients are typically
estimated by the maximum likelihood method [16].

It is likely that not all PWMs are informative in the model.
Therefore, the penalized logistic regression model is more
suitable. This model amounts to minimize the following
function:

L(β0, β, λ) = −`(β0, β) +
λ

2
‖β‖2 (2)

where ` indicates the binomial log-likelihood, and λ is a
positive constant that needs to be determined. We solve this
model by using the R package glmnet [17] through a 10-fold
cross-validation procedure.

III. RESULTS

Our analysis used two sets of WGBS data that were
previously reported for the two cell types: adipose-
derived stem cells (ads) and iPSC of the adipose-derived
stem cells (ads-ipsc) [18]. The aligned WGBS data and
RNA-seq data for both cell types were obtained from
http://neomorph.salk.edu/ips methylomes/data.html. The
RNA-seq data includes two replicates for each cell type.

LMRs and dLMRs
By using MethylSeekR, 47, 618 and 13, 424 LMRs were
identified for ads and ads-ipsc respectively. We associated
each LMR to its closest gene annotated by RefSeq IDs. The
distributions of LMRs relative to the TSSs of their associated
genes are shown in Figure 1. For both cell types, it can be
seen that large proportions of LMRs are located in regions
more than 10kb away from the TSSs.

Fig. 1. The distribution of LMRs to their associated genes.

We divided the LMRs into three categories based on their
distances to the TSSs of the associated genes. (1) Promoter:
LMRs that overlap the promoter regions (1, 000 bp upstream
and 500 bp downstream of TSSs). (2) Genebody: LMRs
that overlap the genebody regions. (3) Intergeneic: LMRs
that overlap the intergenic regions, i.e., LMRs not overlap
promoter or genebody regions. Table I provides the LMR
distributions for the two cell types. It is noticable that most
of the LMRs fall in genebody and intergenic Regions.
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TABLE I
THE NUMBER OF IDENTIFIED LMRS AND THEIR GENOMIC FEATURES.

Cell type Total Promoter Genebody Intergenic
ads 47, 618 1, 374 15, 374 30, 870

ads-ipsc 13, 434 547 3, 632 9, 255

Figure 2 shows the boxplots for the sizes and CpG contents
of LMRs. The results confirmed that the LMRs are CpG
poor, and a large proportion of them locates in intergenic as
well as genebody regions.

Fig. 2. The boxplots of LMRs size and GC content for ads (top) and
ads-ipsc (bottom).

Following the procedure described previously, we identi-
fied the dLMRs between the two cell types. 26, 723 dLMRs
were observed in ads only and associated with 9, 502 unique
RefSeq IDs; 3, 871 dLMRs were observed in ads-ipsc only
and associated with 2, 483 RefSeq IDs. Further analysis
revealed that only a small number of genes having dLMRs in
their promoter regions and most of genes are associated with
dLMRs located in genebody and intergenic regions. Table II
shows the details. Note that one gene may associated with
multiple dLMRs in different genomic regions.

TABLE II
NUMBER OF REFSEQ IDS THAT ARE ASSOCIATED WITH DLMRS IN

DIFFERENT GENOMIC REGIONS

Cell type Total Promoter Genebody Intergenic
ads 9, 502 896 3, 837 4, 769

ads-ipsc 2, 483 197 721 1, 565

DE genes

We identified 2, 298 DE genes between ads and ads-ipsc
from the RNA-seq data set using NOISeq from Bioconductor.
Out of which 480 genes had at least one dLMR. Since
dLMRs in distal and genebody regions are of our primary
interest, we further removed genes with dLMRs located in
promoter regions. Two DE genes sets were prepared in order
to evaluate the association levels of dLMRs from different
regions to gene expression change. Set1 includes the DE
genes with only intergentic dLMRs. This set consists of 250
up-regulated and 18 down-regulated genes in ads compared
to ads-ipsc. Set2 is comprised of DE genes with either
intergenic and/or genebody dLMRs. This set includes 410
up-regulated and 28 down-regulated genes for ads comparing
to ads-ipsc.

We trained the penalized logistic regression model with a
10-fold cross-validation procedure to identify the best value
for λ for each dataset. The Area Under the ROC Curve
(AUC) was used as the criterion for performance evaluation.
Figure 3 shows the cross-validated AUC values of the model
at different values of λ for each dataset. As observed the
predictions at the best parameter values are quite promising;
giving a AUC value of 0.84 for Set1 and 0.88 for Set2.

Fig. 3. The cross-validated AUC values vs. log(λ) values. Top: DE genes
with Intergenic dLMRs. Bottom: DE genes with Intergenic and Genebody
dLMRs.

Finally, we used the following procedure to identify a
stable set of non-zero β coefficients. The best λ value for
each data set was determined based on the 10-fold cross-
validation procedure. Using the best λ value, the model was
trained using each dataset for 100 times. The average of β̄
vectors learned from the 100 runs was calculated. From the
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averaged β vectors obtained for Set1 and Set2, we identified
26 PWMs corresponding to non-zero coefficients for Set1;
and 76 PWMs with non-zero β coefficients for Set2. We
further removed PWMs with coefficients of extremely small
asolution values (< 10−5), resulting in 18 PWMs for the
Set1 and 72 PWMs for Set2.

For the selected TFs, we further checked if the predicted
regulations are supported by literature. For DE genes in Set1,
we successfully detected the binding of TF FOSL1 on gene
JUN [19]. FOSL1 encodes leucine zipper proteins that can
dimerise with proteins of the JUN family, thereby forming
the TF complex AP-1. Another example is the binding of
TF TP63 on N4BP2 gene [20] in Set2. TP63 is a member
of p53 family and has been related with apoptosis [21].

IV. DISCUSSION AND CONCLUSION

We have developed a penalized logistic regression model
to evaluate the regulatory effects of TFBSs in low-methylated
regions identified from the analysis of WGBS data. Our
preliminary results demonstrate the promising performance
of our model, suggesting the similarity scores of TF binding
sites in LMRs in intergenic and/or genebody are indeed
predictive for gene expression directional changes. This
computational analysis provided further supportive evidence
that TF binding sites in LMRs in distal regions or gene-
body may be functional, implying potential distal regulatory
mechanisms of the LMRs.

The identification of distal regulatory regions is one of
the major challenges in gene regulation study. The ChIP-seq
based experimental approach to the detection of global TF
binding sites is useful, however, it is limited by antibody
availability. Other epigenetic features, such as chromatin
structure and histone modification marks have been utilized
for the prediction of active regulatory regions including
enhancers [22]. These studies have revealed that the histone
modification patterns are far from sufficient for such a task
[23]. The integration of data from chromatin structure, his-
tone modification and DNA methylation for a comprehensive
enhanser study would be a future direction.
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