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Abstract— Time-course gene expression profiling provides
valuable data on dynamic behavior of cellular responses to
external stimulation. Investigation of transcription factors (TFs)
that regulate co-expressed genes in a dynamic process can
reveal insights on the underlying molecular mechanisms. As the
ChIP-seq technology is only suitable for a fraction of TFs in
mammalian organisms, the computational identification of rele-
vant TFs remains to be critical. We propose a regression-based
model to infer the functional binding sites of TFs from time-
course gene expression profiles. Our approach incorporates an
association strength for each potential TF and target gene pair
based on computational analysis of binding sites in promoter
sequences of co-expressed genes. Our model further uses the
Lasso-penalized technique to search for the most informative
TF-target pairs. The application of our method to a gene
expression study on E2-induced apoptosis in a variant of MCF-
7 cells revealed that the findings are biologically meaningful.

I. INTRODUCTION

Numerous studies have shown that transcription factors
(TFs) play a key role in regulation of gene expression by
binding to the DNA sequences of their target genes in a
sequence-specific fashion [1]. These bindings might occur
on either proximal or distal regulatory regions to the tran-
scription start sites (TSSs) of the target genes. To investigate
TF binding profiles at genome scale, experimental and com-
putational approaches have been developed [2]. Chromatin
immunoprecipitation followed by microarray (ChIP-chip) or
massively parallel sequencing (ChIP-seq) are used as major
experimental methods to capture global binding a given TF
under specific condition [3], [4], [5]. However, they are lim-
ited by the availability of TF-specific antibody and prohibited
by the high cost. On the other hand, Position Weight Matrices
(PWMs) are employed to predict transcription factor binding
sites (TFBSs) in potential regulatory regions [6], [7]. The
established putative regulation relationship between TFs and
target genes can be combined with gene expression time
course data for the reconstruction of transcription regulation
networks (TRNs) [8].

Earlier works attempt to model the expression of a specific
gene as a function of the expression of other genes (possibly
TF coding genes only) based on dynamic Bayesian networks
or other statistical methods [9], [10], [11]. Other approaches
include taking gene expression as linear combination of
activities of other genes through network component analysis
[12], [13], [14].
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Our work employs a regression-based framework to model
expression of a gene at a time point as the linear combination
of expression of TF-coding genes and non-TF coding genes
at the previous time point based on the putative TRN
identified from predicted TFBSs in promotor regions of co-
expressed genes. An association strength is further devised
to provide a weight on each TF and target gene pair based
on similarity scores of TFBSs of the TF. From the sparsity
of a TRN and the limited number of time points in a
time course experiment, LASSO penalized regression [15]
is proposed for identifying a small set of connections in
the putative TRN. The regression coefficients obtained from
the model provide information on how a gene is regulated
by its regulating TF coding genes and other non-TF genes.
Therefore, the feature of our model is the ability to separate
regulatory effects of TF coding genes from those of non-TF
genes. The dissection of TF regulatory effect may provide
better understandings on potential regulatory mechanism
underlying the observed time-course gene expression data.

II. METHODS

A. Association strength of a TF to a target gene

To predict TFBSs in the promoter regions of a set of co-
expressed genes, the cREMaG database [16] was queried.
cREMaG are built upon searching promoter regions (10 kb
upstream and 2 kb downstream of a TSS) of genes with the
PWMs from TRANSFAC [17] or JASPAR [18]. For a query
gene set, cREMaG provides the following information:
• Numbers of predicted TFBSs on individual promoter

regions of the genes
• Similarity score of each predicted TFBS
• Enrichment fold p-value of a PWM in the gene set
For each PWM, the enrichment of the predicted TFBSs in

the gene set are evaluated based on the distribution of random
background sequences. A smaller enrichment fold p-value
means that the number of TFBSs in the promoter sequences
is higher than what is expected from the random sequences.
Since a PWM may represent multiple TFs and each TF
may have multiple PWMs, we remove PWMs representing
multiple TFs and choose the PWM with the highest Informa-
tion Content (IC) [19] for a TF with multiple PWMs. After
applying this procedure, a one-to-one relationship between
a TF and a PWM is ensured. In the subsequent description,
TF and PWM are used alternatively.

We introduce association strength to quantify the aggre-
gated effect of multiple TFBSs found in a promotor for a TF.
Suppose there are m TF coding genes and n non-TF coding
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genes with known gene expression profiles, and the TFBSs of
these TFs are significantly enriched in the promoter regions
of n + m genes. This setting implies that a TF may also
regulate itself.

The association strength of TF j (j = n+ 1, . . . , n+m)
on the promoter of gene i (i = 1, . . . , n+m) is defined as

αij = − ln(pj)

nij∑
k=1

sijk (1)

where pj is the enrichment fold p-value of TF j for the
query gene set; nij is the number of predicted TFBSs of TF
j on the promotor of gene i; sijk is the similarity score of
predicted TFBS k of TF j on gene i. The enrichment fold
p-value is used to weight the similarity score. If TF j has
no predicted TFBS for gene i, αij = 0.

B. LASSO regression model

Assume the expression of gene i at time point t + 1 is
proportion to the expression of all non-TF coding genes
and the expression of all TF coding genes weighted by
corresponding association strength defined in equation (1),
at time point t. Let yi,t be the expression of gene i at
time point t (t = 1, ..., T ). Denote NTF = {1, ..., n}
and TF = {n + 1, ..., n + m}. The expression of gene
i (i = 1, ..., n+m) at time t+ 1 can be written as

yi,t+1 =
∑

j∈NTF

βNTF
ij yj,t +

∑
j∈TF

βTF
ij αijyj,t + εi,t

where βNTF
ij is the regulatory effect of expression of non-TF

coding gene j on expression of gene i; βTF
ij is the regulatory

effect of expression of TF coding gene j on expression of
gene i; and εi,t is the error term. Obviously, if TF j has no
predicted TFBS on gene j, αij = 0 implies βTF

ij = 0.
Our model learns the regulatory effects βNTF

ij and βTF
ij

with the presence of the association strength αij . If a
coefficient βTF

ij is very close to zero, we conclude that no
regulatory effect of TF j on its target gene i can be identified
from the observed gene expression even with the presence
of the predicted TFBSs. A similar statement can be made
for those small coefficient βNTF

ij .
The following notations are used to describe our regression

model for time course. Given a temporal expression profile
{yi,1, ..., yi,T } of gene i, we define for t = 1, ..., T ,

yi,T−t
=
[
yi,1 · · · yi,t−1 yi,t+1 · · · yi,T

]T
(2)

εi,T−t
=
[
εi,1 · · · εi,t−1 εi,t+1 · · · εi,T

]T
(3)

where [ ]T is vector transpose. The expression time course of
all non-TF coding genes from time point t = 1 to t = T − 1
is written in the following matrix form:

Y NTF
T−T

=
[
y1,T−T

· · · yj,T−T
· · · yN,T−T

]
Similarly, the expression time course of all TF coding

genes at same time points is written as

Y TF
T−T

=
[
yN+1,T−T

· · · yj,T−T
· · · yN+M,T−T

]

Recall that in formula (2) the expression of TF coding gene
j is weighted by its association strength on target gene i, i.e.,
αij . When expanded into the time course from time point 1
to T − 1, it can be written as

αijyj,T−T
=
[
αijyj,1 · · · αijyj,T−1

]T
Take the association strength of all TF coding genes on target
gene i as

αi =
[
αi,n+1 · · · αi,n+m

]
The expression time courses of all TF coding genes from
time point 1 to T − 1 weighted by association strength on
target gene i can be written as

αi ⊗ Y TF
T−T

=
[
αi,n+1yn+1,T−T

· · · αi,n+myn+m,T−T

]
We further denote

βNTF
i =

[
βi,1 · · · βi,n

]T
βTF
i =

[
βi,n+1 · · · βi,n+m

]T
With all the notations defined above, the time course of
expression of gene i (i = 1, ..., n + m) can be modeled
as

yi,T−1
= Y NTF

T−T
βNTF
i +αi ⊗ Y TF

T−T
βTF
i + εi,T−T

Generally, in a time course microarray gene expression data,
the number of time points is much smaller comparing to the
number of genes. We propose a LASSO penalized regression
model for model section:

min

{
n+m∑
i=1

[∥∥∥yi,T−1
− Y NTF

T−T
βNTF
i −αi ⊗ Y TF

T−T
βTF
i

∥∥∥2
+λ
( n∑

j=1

|βNTF
ij |+

n+m∑
j=n+1

|βTF
ij |
)]

(4)

where λ is a positive parameter to be determined. The
LASSO model aims at the balance between the prediction
error of gene expression and the model size, i.e., the number
of non-zero regulatory effects. By minimizing the object
function for all the genes with a properly chosen λ, the TRN
can be determined based on the (n+m)× (n+m) matrix
of regulatory effects β = [ βNTF βTF ].

We determined λ by a K-fold cross-validation (CV) as
illustrated in Figure 1. It is clear that the model for each gene
i can be trained independently from formula (2) and (4). The
expression of gene i at time point t depends on the expression
of all genes at previous time point t−1 according to formula
(2), which means that all time points in each subsample are
required to be consecutive in the evenly divided split K sub-
samples over the time points. We randomly took 1 subsample
as the testing set and the remaining of the subsamples as the
training set, and iterated until all subsamples were tested.

The range of λ was determined as follows. First, we ran
a trial LASSO regression with all time points to obtain
the ranges of λ for each individual gene. Let λmax be the
maximum among all λ values. Then λ range was reset as

4768



Fig. 1. Procedure of K-fold cross validation. The time course are evenly
divided into K subsamples by time points. In each subsample, the time
points are consecutive. For each testing subsample including expression
from time point ts to ts+b for some positive integer s and b, the rest
of K-1 subsamples is used to train the model (2) for individual λ values.
After solving the optimization problem and obtaining the optimal solution
βNTF (λ) and βTF (λ), they are used to predict the gene expression levels
for all genes at time point ts to ts+b based on equation (2). Iterating this
process for all K subsamples, the total cross-validated sum-of-square errors
for entire time course (except time point 1) is calculated.

[0, λmax/5]. All values in the range starting from 0 with
an increment of λmax/300 were used in the subsequent K-
fold CV procedure. In our experiment, we set K = 10. We
repeated this procedure for all possible λ values in the above
range and determined the best λ value as the one with the
smallest CV validated sum-of-square errors. Finally, the β̂

TF

and β̂
NTF

values obtained from the K training folds were
averaged to identify the network learned from the LASSO
model. The “parallel” package in R was used to solve the
model (4) for all genes simultaneously.

III. RESULTS

A. Dataset

We applied our method to a microarray gene expression
dataset [20] (GEO access id: GSE29917), in which the
apoptosis of MCF-7 variants in response to stress was
investigated. These variants are either estrogen-dependent for
growth (MCF-7:WS8), or resistant to estrogen deprivation
and refractory (MCF-7:2A) or sensitive (MCF-7:5C) to E2-
induced apoptosis. Each cell line was treated with 10−9M
E2 or vehicle control over a 96h time course consisting
of 7 time points. cRNA probes from individual E2-treated
samples were competitively hybridized against time-matched
pooled control probes using 2-color Agilent 4×44k human
oligonucleotide microarrays. Gene expression at 2h, 6h,
12h, 24h, 48h, 72h, and 96h for 6 biological replicates per
condition were observed.

B. TRN reconstruction

There are 1, 142 genes identified as differentially ex-
pressed (DE) for the MCF-7:5C cell line in the original paper
[20]. We extracted the expression of DE genes data and
grouped them into 5 clusters using hierarchical clustering
with Pearson correlation metric and Ward linkage. The

Gene Ontology enrichment analysis shows that Cluster 5 is
enriched for TF binding. Therefore we chose this cluster for
our modeling.

We queried the genes of Cluster 5 in cREMAG for TFBS
prediction as described in Method section. From the result
we selected 25 TF coding and 110 non-TF coding genes to
control the network size. To better reconstruct the TRN, we
used the B-spline technique [21] to interpolate the original
dataset and expanded the expression time course into 25, 32
and 48 time points.

The number of interactions with non-zero βTF coefficients
obtained from our model are listed in Table I. The sub-TRN
representing the interactions between TF coding and target
genes are presented in Figure 2. The result shows the need
of increasing sampling time points by interpolation of the
original data.

TABLE I
PERFORMANCE CHARACTERISTICS ON THE EXPERIMENTAL DATA

Cluster TFBS predicted #Time Learned %learned
(#edges) (#edges)

25 143 12.51
C5 1,131 32 140 12.38

48 154 13.61

TFBS prediction stands for the connected edges with non-zero association
strength. Learned stands for the learned connected edges through
regression. The percentage stands for the ratio between the number of
learned connected edges and the connected edges given by association
strength matrix.

Fig. 2. The sub-network for TF coding genes and their targets in
Cluster 5. The red pies are non-TF coding genes. The yellow squares are
TF coding genes. The red arrows indicate the connection between TF coding
genes. The blue arrows show the connection between TF coding genes and
non-TF targets.

C. Verification of predicted TF-target interactions

Several learned interactions have been verified in pre-
vious studies. For example, the detected regulation targets
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of RELA. In human, RELA (v-rel reticuloendotheliosis
viral oncogene homolog A) gene encodes Nuclear factor
NFκB p65 subunit, which is a TF expressed in growth
plate chondrocytes where it facilitates chondrogenesis. p50
(encoded by NFκB1) binds to p65 (RELA) and p50/p65
heterodimer is the most abundant form of NFκB complex.
NFκB is a generic name for an volitionally conserved TF
system that contributes to the mounting of an effective
immune response and is also involved in the regulation of
cell proliferation, development, and apoptosis. IRF1 (Inter-
feron regulatory factor 1) was the first identified member
in interferon regulatory transcription factor (IRF) family.
IRF1 regulates expression of a variety of target genes by
binding to an interferon stimulated response element (ISRE)
in their promoters. Previous studies have shown p50/p65
heterodimer and IRF1 physically interact with each other
and cooperatively induce MHC class I gene expression [22].
Studies also revealed that increased IRF1 activation will
suppress the NFκB p65 (RELA) activity and inhibits the
expression of prosurvival (BCL2, BCL-W), and induces the
expression of proapoptotic members (BAK, mitochondrial
BAX) of the BCL2 family. This molecular signaling is
associated with activation of STAT1, and leads to increased
mitochondrial membrane permeability, activation of CASP7,
CASP8, and CASP9, and induction of apoptosis in MCF-7
cells [23].

Another example is the self regulation of NFIL3 (nuclear
factor, interleukin 3 regulated). NFIL3 binds to the promoter
region of IL3 (interleukin-3) gene thus initiates its transcrip-
tion. IL3, which encodes cytokine, is capable of supporting
the proliferation of a broad range of hematopoietic cell
types, and involves in a variety of cell activities such as cell
growth, differentiation and apoptosis [24]. A recently study
investigated basic region-leucine zipper (bZIP) transcription
factors and quantified bZIP dimerization networks for five
metazoan and two single-cell species, measuring interactions
in vitro for 2,891 protein pairs. The interaction of NFIL3
on itself has been verified using fluorescence resonance
energy transfer (FRET) [25]. Other studies have shown when
BRAC1 gene is knocked out in MCF-7 cells, the expression
of NFIL3 will be up-regulated [26].

These verified TF interactions in previous studies suggest
that our method may be capable of identify ”functional”
transcription regulatory effects. However, a comprehensive
evaluation of the proposed model is needed.
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