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Abstract— Healthcare costs in the US are among the highest
in the world. Chronic diseases such as diabetes significantly
contribute to these extensive costs. Despite technological ad-
vances to improve sensing and actuation devices, we still lack a
coherent theory that facilitates the design and optimization of
efficient and robust medical cyber-physical systems for manag-
ing chronic diseases. In this paper, we propose a mathematical
model for capturing the complex dynamics of blood glucose
time series (e.g., time dependent and fractal behavior) observed
in real world measurements via fractional calculus concepts.
Building upon our time dependent fractal model, we propose
a novel model predictive controller for an artificial pancreas
that regulates insulin injection. We verify the accuracy of our
controller by comparing it to conventional non-fractal models
using real world measurements and show how the nonlinear
optimal controller based on fractal calculus concepts is superior
to non-fractal controllers in terms of average risk index and
prediction accuracy.

I. INTRODUCTION

Diabetes is one of the fastest growing diseases in the
world. Patients suffering from type-1 diabetes have no
endogenous insulin production due to malfunctioning of
pancreatic beta cells, hence, inability of their body to lower
blood glucose (BG) without exogenous insulin. The CDDT
study [7] revealed the impact of intensive insulin therapy
in comparison with conventional therapy (one or two daily
insulin injections and a daily monitoring of BG or urine).
They concluded that intensive therapy results in lower mean
glycemic level and significantly reduced health complica-
tions. This motivates the design of an artificial pancreas (AP)
which seeks to improve the quality-of-life for type-1 diabetic
people by estimating deviations in BG level from refer-
ence value and determining the amount of injected insulin.
Adopting a cyber-physical system (CPS) perspective, the AP
consists of a continuous time blood glucose sensors, a control
algorithm and safety layer, and an insulin injection device.
There have been significant advances in BG sensing and
insulin injection devices. However, we still lack efficient APs
that can control the glycemic level. This can be attributed
inaccurate mathematical models and control algorithms. In
this work, we present a new control algorithm on the basis
of observed fractality in the BG time series.

The paper is organized as follows: Section II overviews
the prior work, discusses the pros and cons of the proposed
control algorithms and presents our motivation for proposing
a fractal controller. Section III presents our formulation
of a fractional order model predictive controller. Section

IV summarizes our results and contrasts it to the previous
conventional integer order model predictive approach.

II. RELATED WORK AND NOVEL CONTRIBUTION

To control the glycemic level and prevent both short-
and long-term medical complications, numerous control al-
gorithms based on proportional-inte-grative-derivative (PID)
control [3][19][20][22][23] and model predictive control
(MPC) [1][12][13][15] have been proposed. To understand
the rationale behind using PID controller in glycemic control
[19][20][3][22][23], we explain each of its terms: i) a P-
controller determines the quantity of insulin as a function
of the difference between measured blood glucose and the
reference value; ii) an I-controller finds the supplement to
the P-controller insulin injection rate due to observed errors
over a short period of time. This term helps to reduce BG
level of insulin resistance patients; iii) a D-controller adds
a correction to the PI-controller insulin injection rate by
multiplying the slope of the errors between the actual BG
and the reference value with a derivative gain factor. This dis-
tinguishes insulin injection rates for different situations with
same current glucose level having different blood glucose
increase rate. Despite simplicity in implementation, Renard
et al. [17] observed that controlling the BG levels via PID
controller in the postprandial period (i.e., two hours after
meal intake) remains a significant challenge. In addition,
the need of the PID-controller for external intervention
(such as programming manually the bolus before meals)
critically affects the feasibility of such approaches. Another
drawback of PID-controllers is that initial trials revealed that
trying to control the meal related hyperglycemia resulted in
hypoglycemia in a very short interval of time after meal
intake leading to dangerous and life-threatening situations.

Model predictive control (MPC) formulates the BG regula-
tion as a general optimization that can involve many types of
models and objective functions. MPC consists of two steps:
i) a dynamical model (usually linear models are identified
from measurements) of the BG dynamics and ii) an optimal
control signal which is calculated over a predefined time
interval by solving an optimization problem. This formalism
accommodates delays associated with insulin absorption and
can easily account for meal intake and prandial insulin bo-
luses by the patient. The main feature of MPC is that it allows
the current timeslot to be optimized while keeping future
timeslots into account. This means that the optimization
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Fig. 1. Detrended fluctuation analysis on real worlds’s BG levels and
shuffled time series from the real BG values

is achieved on a finite time horizon while implementation
is only applied on the current timeslot. Along these lines,
Hovorka et al [11] investigated an in silico MPC-approach to
control the BG during fasting conditions when blood glucose
sampling resolution was 15 minute while manual information
regarding meal insulin bolus (i.e., meal size) is provided. On
a different study, Magni et al. [13] assume that the meal
announcement is available and presented an in silico linear
MPC control approach which determines the insulin injection
rate by solving an optimization problem under a linear model
for the BG dynamics. Patek et al. [16] described a complete
CPS approach to the AP design on the basis of linearized
state space model and using MPC formalism. Lee et al. [12]
discussed an in silico MPC-approach to blood glucose regu-
lation which relies on detecting the meal size and reduces the
overall daily mean glucose for each patient. Similarly, Abu-
Rmileh and Garcia-Gabin [1] present a constrained MPC
approach to glucose regulation by adopting a linear state
space model relating the BG levels to the insulin injection
rate and meal intake variable and solving the MPC problem
for three glycemic ranges, namely 60, 120, and 200mg/dl.

Several clinical studies [4][6] have assessed the efficacy
and benefits of these control algorithms. Clarke et al. [6]
studied the benefits of the linear MPC approach proposed in
[13] and found that the risk of hypoglycemic events was not
always eliminated. In addition, the authors observed that the
MPC approach may be highly sensible to BG variability and
transmission errors. Similarly, Bruttomesso et al. [4] showed
that although MPC is supposed to provide better performance
than PID controllers, in reality none of these approaches
offered a good postprandial normoglycemic profile.

The vital ingredient of MPC is the model that links insulin
delivery and meal ingestion to BG dynamics. This physio-
logical model needs to account for fundamental processes
regulating glucose level. Inspired by the observed statistical
properties of blood glucose time series in [10] and toward
proposing new efficient algorithm for glycemic control, we
make the following contributions:

• Investigation of long-range dependency and time-
dependent fractional order derivative: Fig. 1. shows
the detrended fluctuation analysis (DFA) [8] of the
blood glucose time series characterized by a Hurst
exponent of 0.77 proving the long-range dependence
behavior. By randomly shuffling the BG values and
performing the DFA on the newly generated series, the
Hurst exponent drops to 0.48 which corresponds to a
short-range (memoryless) dynamics. We have observed
a similar trend for the BG time series [9] indicating
the existence of long range dependence property. We
have further investigate the fractal behavior and Fig.
2.a shows the computed time dependent fractional order
derivative obtained via wavelet method in [21]. As
can be seen, assuming a constant fractional order for
the derivative makes the model inaccurate and hence
reduces the control performance.

• Investigation of the accuracy of prediction of blood
glucose based on fractal model: We have generated
the prediction results on the basis of fractal model and
compared the results with non-fractal model in terms
of difference risk index of the predicted values and real
measurements.

• Proposing Control Algorithms with average risk as
cost function: We have formulated the closed-loop
control algorithm in AP as a model predictive algorithm
with risk index as the cost function and reported per-
formance of the fractal controller in comparison to the
conventional non-fractal controller.

III. PROPOSED MATHEMATICAL MODELING AND
CONTROL ALGORITHM IN ARTIFICIAL PANCREAS

The AP control algorithm relies on an accurate model of
the BG dynamics to determine the best insulin injection rate
and inject the insulin via a specialized pump to maintain the
body in normal glycemic range. Toward this end, we first
present our novel fractional calculus assisted mathematical
model to capture the blood glucose characteristics observed
in publicly available real world measurements [9]. Because
modeling is a crucial part in the design of any cyber-physical
system [2][14], we propose a time dependent fractional
model of BG dynamics and formulate the problem of finding
the best insulin injection rate as a model predictive control
problem in which the average risk index in the finite time
horizon is formulated as cost function to minimize.

A. Mathematical Modeling of Blood Glucose

The state-of-the-art control algorithms in AP rely on the
memoryless assumption about the blood glucose and ignore
the intrinsic physiological variability. In addition, current
control algorithms rely on memoryless linear models to
find the insulin injection rate. However, the efficacy and
performance of such control algorithms are highly dependent
on the accuracy of modeling blood glucose dynamics. In
this work, rather than, ignoring complex fractal character-
istics observed in blood glucose time series, we develop a
mathematical model for capturing complex blood glucose
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dynamics capable of encapsulating the time dependent fractal
behavior. To capture the time dependent fractal behavior
shown in Fig. 1 and implicitly the long range memory
property, we introduce the fractional derivative (i.e., 0Dα(t)

t )
of the BG level g(t) and express its dynamics as follows:

0Dα(t)
t g(t) = a(t)g(t)+b(t)u(t) (1)

where α(t) is the order of the fractional derivative introduced
to model the time dependent memory of the blood glucose
dynamics, a(t) is the proportionality coefficient , u(t) denotes
the amount of insulin injection rate at time t, b(t) is a
coefficient representing the impact of injected insulin on the
BG dynamics. The parameter α(t) is obtained by a linear
regression of the coefficient of wavelet transform [21].

Intuitively, having time dependent fractional differentia-
tion 0Dα(t)

t g(t) implies that the current and future BG levels
depend on a set of previous values and so it captures the
observed long range memory and fractal behavior observed
in the power law glucose fluctuations and the spectrum of
fractal dimensions[10]. In addition, rather than iteratively
searching for the best order of an auto-regressive moving
average (ARMA) model and so increasing the number of
time dependent parameters in the model, here we only
introduce α(t) to capture the effect of past values on cur-
rent and future BG dynamics. Of note, the introduction of
a time dependent fractal (fractional order) exponent α(t)
offers also a compact representation of the exhibited intra-
(due to meal absorption, subcutaneous insulin absorption,
daily physical exercise, stress) and inter- (circadian rhythm,
weekly activities) day variability. Consequently, the proposed
model in (1) is able to capture the blood glucose variability
more adequately then integer order differential equations
and addresses the modeling challenges emphasized by the
Diabetes Technology Meeting [18].

B. Optimal Control of Blood Glucose with Average Glycemic
Risk Index as Cost Function

Aiming to bring the BG within healthy glycemic range, we
formulate a finite time horizon optimal control problem in
which the objective is to minimize the glycemic risk index:

minu(t)

t f∫
0

risk(g(t),gre f (t),u(t))dt (2)

subject to glucose-insulin dynamics model in (3), initial
value, glucose state and insulin control constraints:

0Dα(t)
t g(t) = a(t)g(t)+b(t)u(t) (3)

g(t = 0) = g0, umin ≤ u(t)≤ umax, gmin ≤ g(t)≤ gmax (4)

where t f represents the finite horizon of the control problem,
gre f (t) is the time dependent glucose reference value, u(t)
denotes the insulin injected at time t, g0 is the initial glucose
level, umin and umax are the minimum and maximum allowed
insulin amounts to be injected, gmin and gmax are the safe
bounds imposed on the glucose level. This risk index is
motivated by the diabetes literature [5] and is shown in Fig.
2.d.

The goal of the controller is to find the near future
best insulin amounts which minimizes average risk. This
risk index is defined such that it can capture both chronic
and acute risk of glycemic value in a quantitate way; with
asymmetric property of being higher for values less than 140
and less for values less than 140. At each control interval
only the first insulin value u is injected through the insulin
pump and then the optimization problem is solved again to
find the next amount for the newly observed BG dynamics.

IV. RESULTS, DISCUSSION AND FUTURE WORK

To investigate the impact of using proposed fractional
order model with respect to conventional integer order model,
we compare the predictability ability of both models on
real world’s measured time series [9]. We generated pre-
dictions for both fractal and non-fractal model. Opposed
to the conventional comparison of root mean squared error
(RMSE), here we compared the distribution of difference
of risk index between the prediction and the measured data
for fractal and non-fractal model. As can be seen from the
distribution of risk index error of fractal and non-fractal
approach in Fig. 2.b and Fig. 2.c, fractal model has less
proabable risk with non-fractal model having 18% more risk
indexo on average. Secondly, the distribution of error of non-
fractal approach is more likely to have negative values which
means it predicts values which are less risky than the actual
glycemic level values and can mislead the control algorithm
by being optimistic.

We have also verified the impact of using fractional order
controller compared to conventional integer order controller
for several control time horizon values. We applied both
control algorithms in postprandial scenario and report the
difference of obtained blood glucose trajectory with respect
to conventional integer order controller in Fig. 2.e. Of
note, the non-fractal controller which ignores the long range
memory effects has the tendency to reach lower BG values.
We have also reported the difference of the average risk
index over the finite time horizon in Fig. 2.f. As can be seen,
the average risk index resulting from application of fractal
controller is less than non-fractal controller. Future directions
toward investigation of fractal controller include clinical
investigation and modification of current FDA approved
patient simulator to account for the fractal complexity of
real blood glucose time series.
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