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Omid Monfared, Dragan Nešić, Dean R. Freestone, David B. Grayden, Bahman Tahayori, and Hamish Meffin

Abstract— Standard volume conductor models of neural
electrical stimulation assume that the electrical properties of
the tissue are well described by a conductivity that is smooth
and homogeneous at a microscopic scale. However, neural tissue
is composed of tightly packed cells whose membranes have
markedly different electrical properties to either the intra- or
extracellular space. Consequently, the electrical properties of
tissue are highly heterogeneous at the microscopic scale: a
fact not accounted for in standard volume conductor models.
Here we apply a recently developed framework for volume
conductor models that accounts for the cellular composition of
tissue. We consider the case of a point source electrode in tissue
comprised of neural fibers crossing each other equally in all
directions. We derive the tissue admittivity (that replaces the
standard tissue conductivity) from single cell properties, and
then calculate the extracellular potential. Our findings indicate
that the cellular composition of tissue affects the spatiotemporal
profile of the extracellular potential. In particular, the full
solution asymptotically approaches a near-field limit close to
the electrode and a far-field limit far from the electrode.
The near-field and far-field approximations are solutions to
standard volume conductor models, but differ from each other
by nearly an order or magnitude. Consequently the full solution
is expected to provide a more accurate estimate of electrical
potentials over the full range of electrode-neurite separations.

I. INTRODUCTION

The problem of electrical stimulation of neural tissues is
particularly important for developing medical bionic devices
that use electrical stimulation to either treat a disease, such as
deep brain stimulation (DBS), or use it to augment a sense,
such as a retinal implant for a bionic eye. Such a model
is important because it will facilitate targeted delivery of
electrical stimulation, which will lead to selective activation
of target neural populations.

In the standard volume conductor approach the tissue is
assumed to be homogeneous, even at the microscopic scale,
which results in having a local and constant conductivity.
However, a real tissue is composed of cells and neurites in
which the extracellular and intracellular spaces are separated
by a membrane. The membrane has capacitive and high
impedance properties and separates the comparatively low
resistance intra- and extracellular spaces. The neural tissue is
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composed of tightly packed fibers creating a high extracellu-
lar resistance that constrict the passage of current through the
extracellular space. Each fiber in the tissue has a diameter
which is wide compared to the width of the extracellular
space, resulting in a low resistance intracellular pathway
along the full fiber length. However, this current pathway
is hard to access due to the existence of the high impedance
membrane. None of these facts are accounted in the standard
volume conductor models.

Meffin et.al [1] provided a modified framework to the
standard volume conductor approach to address these issues.
They introduced an admittivity kernel to account for the
cellular geometry, which replaces the conductivity used in
standard volume conductor models. The admittivity was de-
rived by characterizing the electrical properties of individual
neurites via a transimpedance equation. In a further study,
they used a mean-field approach to find the admittivity
for a composite of neurites [2]. This admittivity changes
the spatiotemporal profile of the electrical potentials in a
standard volume conductor approach.

In this paper, we apply this framework for modeling
the effect of cellular composition of tissue in a volume
conductor. The main contribution of the current work is to
calculate the admittvity and extracellular electrical potential
for a specific tissue type. The tissue is composed of neurites
that are crossing each other in all directions representing
cortical tissue. For simplicity, we consider an isotropic case
of equal probability for neurite directions. We examine how
cellular geometry affects the spatial profile of extracellular
potential (first stage of the standard volume conductor ap-
proach) and how different the profiles are compared to the
standard volume conductor approach.

II. METHOD

The volume conductor approach involves both macro-
scopic and microscopic stages. The first stage calculates the
extracellular potential due to a set of electrodes (macroscopic
scale). The second stage is to apply the calculation regarding
the extracellular potential from stage 1 to an equation to
determine the membrane potential (microscopic scale) [1],
[3], [4], [5]. Here we perform the stage 1 computations only,
which allows us to examine how the cellular composition
of tissue affect the spatial distribution of the extracellular
potential

We first recall the equations of the standard volume
conductor model and then introduce the equivalent equations
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of the cellular composite volume conductor model.

A. Standard volume conductor approach

In the standard volume conductor approach, the current
density, Je, and extracellular potential, Ve, are related via
the set of equations:

Je = −σ∇Ve,
∇ · Je = 0.

(1)

The first equation is called the constitutive equation which
relates the current density to the extracellular potential via
a constant conductivity, σ. The second equation is the
continuity equation for the current density.

Combining these equations and adding a point source term
on the right hand side result in Poisson’s equation, which
describes the distribution of the potential in a tissue:

σ
(
∂2Ve

∂x2 + ∂2Ve

∂y2 + ∂2Ve

∂z2

)
= −ι(t)δ(x)δ(y)δ(z), (2)

where δ(·) is the dirac function and ι(t) is the total current
coming out of an electrode. When Poisson’s equation is
solved for this point source electrode, we are given a classical
R−1 dependency for the decay in potential as a function of
space, which is

Ve(R) =
ι(t)

4πσR
, (3)

where R is the distance from the electrode.
One approach to solve the partial differential equation (2),

is to apply the Fourier transform. The following definition is
adopted in the application of the Fourier transform.

Definition 1: Fourier transform. The Fourier transform
notation of a function f(p) is shown by F{f(p)}(k), where
p = (x, y, z) and k = (kx, ky, kz). The 3-dimensional
spatial Fourier transform pair is defined by

f̌(k) =

(
1√
2π

)3 ∫
R3

f(p)e−jp·kdp, (4)

f(p) =

(
1√
2π

)3 ∫
K3

f̌(k)ejp·kdk. (5)

Using Definition 1, the extracellular potential of Equation
(2) is represented in the Fourier domain as

ˆ̌Ve(K) =
ι̂(ω)

(2π)(
3
2 )σK2

, (6)

where an ω is the Fourier pair of t (i.e. the angular fre-
quency), K = |k|, and “(̂.)” is used to show the temporal
Fourier transform. The invrese Fourier transform of this
equation was presented in Equation (3).

B. Cellular Composite Model

1) Stage 1: Extracellular Potential Calculation: In the
cellular composite volume conductor model, the local extra-
cellular current density is related to extracellular electrical
field via convolution in time and space with an admittivity
kernel [2].

Consider a tissue comprised of crossing fibers, which are
classified by the index h = 1, · · · , H . The local extracellular

potential, Ve, is related to the local current density, Je,h, via
a spatiotemporal convolution equation,

Je,h =− 1

2π
ξe,h ∗

uh,t
∇Ve, (7)

Je =

H∑
h=1

αhJe,h, (8)

∇ · Je =0, (9)

where ξe,h is the admittivity kernel for fibers of type h with
both spatial and temporal arguments and is capturing the
heterogeneity of tissue at the microscale. The admittivity is
defined in such a way to be able to capture some properties
of the fibers such as their orientation, diameter, and mem-
brane properties [2]. αh is the extracellular volume fraction
occupied by fibers of type h and Je is the mean extracellular
current density of the tissue. uh represents the unit vector
parallel to a fiber’s axes. The convolution on the direction
of uh shows the orientation of a class of fiber in the model.
The spatial convolution captures the effect of current paths
between points in the extracellular spaces via the intracellular
space. The capacitive property of the membrane leads to
the time convolution. It relates the current density to the
extracellular electrical field at previous times.

The cellular composite volume conductor model is defined
by Equations (7), (8), (9).

Definition 2: The convolution in Equation (7) is defined
as:

ξe,h ∗
uh,t
∇Ve(p, t) =

∫∞
−∞

∫∞
−∞ ξe,h(s′uh, t

′ : uh)

× ∇Ve(p− s′uh, t− t′)ds′dt′.
(10)

The admittivity kernel, ξe,h, for this general structure is
defined in the Fourier domain as [2]

ˆ̌ξe,h(k, ω : uh) = ˆ̌ξe,TI3 + (ˆ̌ξe,L(k, ω : uh)− ˆ̌ξe,T)uhu
T
h ,

(11)

ˆ̌ξe,T =
d

bρe
, (12)

ˆ̌ξe,L(k, ω : uh) =
1

ρi

1 + jωτm + (k · uh)2λ20J
1 + jωτm + (k · uh)2λ20V

, (13)

where ˆ̌ξe,T and ˆ̌ξe,L(·) are the longitudinal and transverse

components of the admittivity ˆ̌ξe(·). I3 is the 3× 3 identity
matrix. uhu

T
h is an outer product. τm is the membrane

time constant. ρe and ρi are the extracellular and intracel-
lular resistivities of the tissue. b is the radius of an ideal
cylindrical neurite and d is the thickness of the extracellular
sheath (equal to half the width of the extracellular space
between neighboring cells). λ0J and λ0V are the electrotonic
length constants calculated under current density and voltage
boundary conditions for the cable equation [1], respectively,
and can be expressed in terms of the fiber’s physical param-
eters,

λ20J ≡ rm
re+ri

,

λ20V ≡ rm
ri
,

(14)
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Fig. 1. Spherical polar coordinates. The dotted line projecting uh onto
the plane is parallel to k and project onto the plane perpendicular to k. θ
is the angle from some arbitrary vector in the plane (dotted parallelogram)
perpendicular to k.

where rm = Rm

2πb is the membrane’s unit length resistance.
Rm is the membrane’s unit area resistance and b is the
neurite’s radius. re u ρe

2πbd is the extracellular resistance per
unit length where d is the width of the extracellular space
and ri u ρi

πb2 is the intracellular resistance per unit length.
Substituting Equation (7) into Equations (8) and (9) for a

point source at the origin, we find

1

2π
∇ ·
( H∑
h=1

αhξe,h ∗
uh,t
∇Ve

)
= −ι(t)δ(x)δ(y)δ(z). (15)

Taking a 4-dimensional Fourier transform in time and
space and rearranging the terms for Ve, the following
equation is obtained

ˆ̌V cart
e (k) =

ι̂(ω)

(2π)3/2
∑H
h=1 αhk

T ˆ̌ξe,hk
. (16)

where ˆ̌V cart
e shows the Fourier transform of the extracellular

potential calculated in Cartesian coordinates.
Assumption 1: Fibers have all orientations with equal

probability.
Assumption 1 implies a continuous and uniform distribu-

tion of fibers’ orientations.
We parameterize the fibers’ orientations using spherical

polar coordinates so that uh lies on the unit sphere centered
at the origin. The sum over fiber types,

∑H
h=1 αhk

T ˆ̌ξe,hk,
becomes an integral in the limit of a continuous distribution
of fiber orientations,

1

4π

∫ 2π

0

∫ π

0

kT ˆ̌ξe(k, ω : uh)k sinφdφdθ. (17)

The volume fraction αh becomes a differential area on the
surface of the unit sphere dα = sinφdφdθ/4π, normalized
to integral of unity. We choose the spherical polar coordinate
system such that axis of rotation is aligned with the vector
k. Thus, φ is the angle between k and the unit vector uh,
so that k · uh = K cosφ. The angle θ is the angle between
projection of uh onto the plane perpendicular to k, and some
arbitrary vector in that plane (see Fig. 1.).

Substituting for ˆ̌ξe(k, ω : uh) from Equation (11), the
integral in Equation (17) becomes:

1
4π

∫ 2π

0

∫ π
0

ˆ̌ξe,Tk
2 +

(
ˆ̌ξe,L(k · uh, ω)− ˆ̌ξe,T

)
× (k · uh)2 sinφdφdθ

= g1K
2

+ g2
λ2
V (ω)

(1− tan−1(KλV (ω))
KλV (ω) ),

(18)
where we have used k.uh = K cosφ and the approximation
d/b << 1 to simplify some of the following expressions
(assuming ρi and ρe have similar magnitudes).

g1 = 2
3
d
bρe

+ 1
3

1
ρi+ρe

b
2d

u 4
3
d
bρe
,

g2 = 1
ρi

ρe
ρe+ρi(

2d
b )

u 1
ρi
,

λV (ω) = λ0V√
1+jωτm

.

(19)

In spherical coordinates Equation (16) is represented as:

ˆ̌V sph
e (K) = −jKι̂(ω)

(2π)3/2[g1K2+
g2

λ2
V

(ω)
(1− tan−1(KλV (ω))

KλV (ω)
)]
,

(20)
By performing a modified, one dimensional, inverse Fourier
transform of Equation (20) with respect to K = |k|, instead
of the normal three dimensional inverse Fourier transform
with respect to k we have:

V sph
e (|R|) =

F−1{ ˆ̌V sph
e (K)}
R

, (21)

where, by definition, the function V sph
e (K) =

−jKV cart
e (k), using the observation that dependency

on the vector k, occurs only through its norm, K. (Note
also, to apply this trick K is allowed vary across the whole
real line, including negative values).

To obtain a far-field approximation to Equation (20), we
consider the K > 0 limit and adopt a Taylor series expansion
around K = 0 for the tan−1(·) term. Thus, Equation (20) is
estimated as

ˆ̌V FF
e =

ι̂(ω)

(2π)3/2σFFK2
, (22)

in the far-field limit, where σFF = g1+ g2
3 u 4

3
d
bρe

+ 1
3ρi

is the
conductivity corresponding to the standard volume conductor
model in the far-field region. On the other hand, the near-
field approximation is achieved when K →∞. The resulting
equation is similar to the far-field Equation (22) but with a
conductivity which is different from the far-field conductivity
by nearly an order or magnitude,

ˆ̌V NF
e =

ι̂(ω)

(2π)3/2σNFK2
, (23)

where σNF = g1 u 4
3
d
bρe

in the near-field region.
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TABLE I
PARAMETER VALUE

Parameter b d ρi ρe Rm τm
Value 1 0.05 1 1 0.1 1
Unit µm µm Ω ·m Ω ·m Ω ·m2 ms
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Fig. 2. Blue: Full numerical solution. Green: Far-field approximation
using the Taylor series expansion around K = 0. Magenta; Near-field
approximation. This is the case when K →∞. Red: The analytic solution
for the far-field approximation. The parameters value are given in Table I.

The far-field and near-field equations derived here are both
solutions of the standard volume conductor models in the
regions, far and close to the electrode, respectively. Here
near-field means distances from the electrode much less
than the frequency (cf. Equation (3)) dependent electrotonic
length constant, λV (ω), while far-field means distance much
greater.

The Fourier transform inversion of Equations (16), (22),
(23) was performed in matlab using ifft function, via the
inversion formula in Equation (21). To avoid a numerical
instability due the singularity in these expression at K = 0,
we multiplied the expression by jK (corresponding to differ-
entiation wrt to R) performed the inverse Fourier transform,
and then integrated the result wrt R to reverse the effect of
the jK multiplication.

III. RESULTS

The results of calculations are plotted in Fig. 2. In this
figure, it is shown how the full numerical solution to the
cellular composite volume conductor model (blue line) in
Equation (16) behaves in the near-field (magenta) and far-
field (green) regions. It can be seen that the full numerical
solution matches the near-field region in the limit of less
than 10 micrometer and then slowly tends toward the far-
field region in the limit of greater than one millimeter.

IV. DISCUSSION

In this paper, we modeled the effect of a point source
electrical stimulation in an isotropic neural tissue composed
of crossing fibers. Under the assumption of “equally oriented
fibers in all directions”, we derived the tissue admittivity to
replace the purely smooth and homogeneous conductivity in

the standard volume conductor approach. We then calculated
the extracellular potential using the cellular composite model
[2]. The results were compared to the solutions of a standard
volume conductor model in the near- and far-field regions.
The physical intuition behind our calculation was to take
into account the effective resistance of the tissue, which is
higher close to the electrode. This is due to the current being
forced to pass through the tightly packed extracellular space,
a fact that has not been taken into account in the conven-
tional model. Taking advantage of the cellular composite
model we demonstrated how the cellular geometry affects
the spatial profile of extracellular. As a result, we found
a range of electrode-neurite separations over which neither
approximations (near- or far-field) were able to be applied.
This range (10− 300µm) is common in neuroprosthetic and
electrophysiological applications.
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