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Abstract— Decoding neural activity to control prosthetic
devices or computer interfaces is a promising avenue for
rehabilitating individuals with amputation or severe spinal cord
injury. In most cases, however, the local functionality of the
neural tissue is not considered when designing a decoding
algorithm. One way to characterize the functional specificity of
a local region of motor cortex, and its output effects, is to use
intracortical microstimulation. In this study, we examined how
the results of an ICMS experiment relate to the performance
of various offline decoders. We found evidence that units from
electrodes with stimulation effects decode kinematics better
than units from electrodes without stimulation effects.

I. INTRODUCTION

Intracortical microstimulation (ICMS) is a widespread
technique for characterizing the relationship between a re-
gion of motor cortex and its output behavior [1], [2], [3].
ICMS is thought to activate the neural tissue surrounding the
electrode tip, and it’s this activation that gives rise to ICMS
evoked movements [3]. The movements evoked by ICMS
in the upper limb region of primary motor cortex are often
specific, and isolated to a specific joint, or set of joints [2],
[3]. Parts of the upper limb are broadly localized to specific
regions of the cortical surface (e.g. the hand representation
is lateral to the arm representation, coarsely). Although
ICMS characterizes motor outputs in the neighborhood of
an electrode, information from ICMS experiments has not
often directly informed studies of neural decoding.

Recently, much effort has been placed on decoding neural
activity to control multiple degree of freedom brain machine
interfaces [4]. One especially pertinent study demonstrates
that accounting for the spatial properties of neural signals
on several electrode arrays yields significant improvements
in decoding performance, though this study spanned a large
region of motor cortex (≈ 12 mm) [7]. Mollazadeh and
colleagues used ICMS to characterize the spatial distribution
of limb motor representations, but were unable to explain the
spatial variability in neural responses with their ICMS results
[7]. We wondered, however, if the relationship between
ICMS and decoding performance may be more apparent
if we constrained ourselves to a smaller region of cortex,
namely the 4×4 mm square spanned by our electrode array.
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Accordingly, we examined the relationship between ICMS
and offline decoding of joint kinematics in this study. We
built decoding models that explicitly incorporated informa-
tion about ICMS effects, and compared the performance
of our ICMS-informed decoder to a similar model without
ICMS information.

II. METHODS

A. Behavioral Paradigm

One male rhesus macaque was operantly conditioned to
perform a random target pursuit (RTP) task. In this task, the
animal was required to move a cursor to targets appearing
sequentially on a screen projected above his arm. After
successfully hitting 7 targets in a row, the animal received a
juice reward. Failure to hit a target in 5 seconds resulted in
a failed trial and no juice reward. The cursor was controlled
by a robotic exoskeleton [5]. A more complete description
of the task may be found in [6].

B. Electrophysiology

We recorded unit spiking activity from one 96 channel
Utah electrode array (Blackrock Microsystems, Salt Lake
City, UT) implanted in the arm region of primary motor
cortex (M1). Unit spiking waveforms were captured at 30
kHz (14 bit resolution) based on threshold crossings and
sorted online using a hoop sorting algorithm. The average
sorted waveform for each unit can be seen in figure 1.

C. Intracortical microstimulation

We used the Utah electrode array to stimulate motor
cortex. Cathodal-anodal pulse trains were generated by a
Blackrock current stimulator (pulse width: 0.2 ms, train-
frequency: 333 Hz, train-duration 75 ms). Current intensities
varied between 20 and 60 µA.

We began stimulating each electrode at 60 µA. If, af-
ter several repetitions, we did not evoke a movement, we
considered that electrode inactive. However, when evoked
movements were observed, we attempted to isolate the
functional specificity of that electrode. If complex, or whole
arm movements were evoked at that 60 µA, we would drop
the current in 10 µA increments until the movement was well
isolated, or no longer visible. For each electrode, the evoked
movements at the lowest current that still reliably evoked
movement were recorded as the behavior for that electrode.
The sequence of electrodes that we stimulated through were
chosen pseudorandomly.
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Fig. 1. Average waveforms of units on the electrode array. Background
color indicates proximal (purple), distal (yellow), or no (gray) stimulation
effects. The dark gray bar in the lower right corner of each panel is a scale
bar indicating 125 µV. If more than one waveform was sorted from an
electrode, the average waveform of each unit appears in a distinct color.

Movements evoked by microstimulation were character-
ized by two experimenters observing the animal. A move-
ment was recorded only if it was visible to both experi-
menters and readily repeatable. We stimulated only when
the animal appeared to be relaxed.

We characterized the behavior of each electrode as either
proximal or distal. Shoulder and elbow movements were
classified as proximal, while forearm muscle twitches and
wrist movements were classified as distal. If an evoked
movement contained both proximal and distal components
it was classified according to the qualitative strength of
each component, e.g. a movement evoking deltoid twitches,
biceps twitches, and wrist flexion would be classified as
proximal. In our sample, 4 out of the 27 electrodes contained
both proximal and distal components (2 were classified as
proximal, and 2 distal).

D. Decoding model

1) Input features: We recorded a total of 52 single units
from the Utah array with a signal to noise ratio greater than
3. 39 out of those 52 units were recorded on electrodes that
evoked movements when stimulated while, the remaining
13 units were recorded on 9 electrodes that did not evoke
movements when stimulated. The spike counts of those 52
units, in 50 ms bins, served as input features to our model.
For each moment in time, we predicted the kinematics at
that moment from concurrent spike counts, as well as the
spike counts in the two preceding bins (so that the spiking
leads the kinematics by 50 and 100 ms, respectively). This
timescale is compatible with a previous finding that the
mutual information between spiking and kinematics peaks
when spiking leads the kinematics by 100 ms [6]. Mathe-
matically, we represented these input features in a matrix
with size N × 156 ( 52× 3 lags) where N is the number of
observations.

We normalized the spike counts in each column of our
feature matrix by computing the z-score so that our input
features better conformed to the assumptions of our decoding
model. When cross-validating or testing, we used the mean
and standard deviation of the training data to normalize the
validation or test data.

2) Output features: We decoded five kinematic quantities
in three coordinate frames: shoulder and elbow velocity;
workspace x and y velocity; and wrist speed. We subtracted
the mean of each of these quantities when fitting our model.
As with the input features, we subtracted the training mean
from validation and test data.

3) Behavioral data selection: We used data from all
successfully completed trials (582 trials) in one experimen-
tal session. In total, this comprised 65289 observations of
kinematics and spiking in 50 ms bins. Each observation was
randomly and independently partitioned into one of three
sets: train (comprising 70% of the data), validate (15%),
and test (15%). Qualitatively, we observed that the specific
allocation of data into train, validate, and test sets did not
influence our findings. Therefore, the results that we report
are based on one partitioning of the data.

4) Decoding model: We used a penalized linear regression
model called ridge regression to relate neural spiking to
movement kinematics [8]. Mathematically, we can express
this model as an optimization problem in which we seek
values of β to minimize the following objective:

min
β

1

2
||K −Xβ||22 + ||Γβ||22 (1)

where K is an N × 1 vector of a given kinematic variable,
X is the input feature matrix (with size N × p), Γ is a p× p
diagonal matrix with the value γ on its diagonal, and || · ||2
denotes the Euclidean norm. A closed form solution to (1)
exists and is given by:

β̂ = (X ′X + Γ′Γ)
−1

(X ′K) . (2)

We used the validation set to find the value of γ that
minimized error on the validation set. We then took the
optimal β̂ learned from the validation set and tested it on the
test data. Performance metrics are reported from the test data.
We quantified decoding performance using the coefficient of
determination, R2, given by the following formula

R2 := 1−
∑
i(Ki −Xiβ̂)2∑
i(Ki − K̄)2

(3)

where Xiβ̂ indicates the model prediction at observation i
and K̄ is the arithmetic mean of K.

III. RESULTS

A. Stimulation effects predict the presence of units

Out of the 96 electrodes on the Utah array, we observed
stimulation effects on 48 electrodes, and recorded well
isolated units on 36. 27 electrodes contained both a unit,
and exhibited stimulation effects (figure 1). We wondered
if the presence or absence of stimulation effects would be
informative about the existence of units on that electrode.
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That is, are stimulation effects statistically independent of
unit recordings? We tested this by performing Fisher’s exact
test on the data in table I. We rejected the hypothesis that
stimulation effects and and the presence of a unit on an
electrode are independent events (p < 0.001). This suggests
that if an electrode evokes movements when stimulated, it’s
more likely to have a unit on it.

TABLE I
PROPERTIES OF THE UTAH ARRAY. PARENTHESES INDICATE EXPECTED

COUNTS UNDER STATISTICAL INDEPENDENCE

stimulation effects no stimulation effects total
with units 27 (18) 9 (18) 36

without units 21 (30) 39 (30) 60
total 48 48 n = 96

B. Decoding from units with and without stimulation effects

We examined whether there may be some qualitative
difference in decoding performance based on the presence
or absence of stimulation effects at a given electrode. More
simply, are units on electrodes with stimulation effects gen-
erally better at decoding than units on electrodes without
stimulation effects? To answer this question we built decod-
ing models for all of the kinematic variables based on spiking
in the 13 units on electrodes without stimulation effects. We
allowed the parameter, γ, to be learned from the validation
set. A summary of decoding performance for each kinematic
variable is presented in table II.

We performed a bootstrap analysis to assess whether or not
decoding performance depends on the presence or absence
of stimulation effects. Because there are substantially more
units with stimulation effects (39 units) than without (13
units), we needed to sample that population. So, for each
iteration of the bootstrap (1000 total), we drew a sample
of 13 units, uniformly at random without replacement, from
the population of units on electrodes with stimulation effects.
We then quantified decoding performance for each of these
bootstrapped samples. The distribution of goodness of fit
values obtained by this bootstrap analysis is shown in figure
2, and summary statistics from this analysis are available in
table II.

We found that each kinematic quantity had a higher
median R2 value from electrodes with stimulation effects,
(table 2, column with stim effects) as compared to neurons
without stimulation effects (table 2, column no stim effects).
Moreover, decoding performance from the units with stimu-
lation effects almost always exceeds that of the units without
stimulation effects (table 2, column proportion).

TABLE II
DECODING PERFORMANCE SUMMARY

kinematics no stim effects with stim effects proportion
shoulder velocity R2 = 0.33 R2 = 0.39 0.82

elbow velocity 0.26 0.37 0.95
wrist speed 0.10 0.25 0.99
x velocity 0.26 0.44 0.98
y velocity 0.26 0.39 0.97
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Fig. 2. Bootstrap analysis of decoding performance. We compared the
decoding performance of units with and without stimulation effects. The
blue vertical line indicates the R2 of a decoder using units on electrodes
without stimulation effects. The histogram depicts the R2 values of decoders
built using using a random sample of units on electrodes with stimulation
effects. A decoder using units on electrodes with stimulation effects almost
always outperforms a decoder using units one electrodes without stimulation
effects.

Taken in sum, these results suggest that decoding perfor-
mance is significantly better using a population of neurons
from electrodes with stimulation effects. The discrepancy
in decoding performance does not appear to be related to
the quality of the neural signals in each population because
the signal to noise ratios of the two populations are not
significantly different (rank sum test, p > 0.05). Moreover,
the firing rates of the two populations are also statistically
indistinguishable (p > 0.05).

C. Does the functional specificity of ICMS benefit decoding?

In the previous section, we provided evidence that units
on electrodes with ICMS effects do a better job of decoding
kinematics; however, it is not clear why this is the case. One
possibility is that the improvement in decoding performance
can be explained by the functional specificity revealed by
ICMS. That is, we hypothesize that units on electrodes that
evoked shoulder movements predict shoulder velocity better
than elbow velocity, and vice versa for units on electrodes
that evoked elbow movements.

To this end, we performed another bootstrap analysis.
From the 13 cells that evoked proximal movements, we drew
a uniform random sample of 5. We then built decoders to pre-
dict shoulder velocity and elbow velocity using the neurons
in that sample. We then quantified decoding performance as
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Fig. 3. We used a bootstrap procedure to select a random sample of 5
neurons on electrodes that evoked either shoulder or elbow movements,
and then decoded shoulder (red) and elbow (green) velocities with those
neurons. Here we present decoding performance as a function of the number
of shoulder cells in the sample where a shoulder cell is defined to be a unit
on an electrode that evoked shoulder movements when stimulated using
ICMS.

a function of the number of cells on electrodes that evoked
shoulder movements. Under our stated hypothesis, we would
expect shoulder velocity decoding to improve as the number
of shoulder neurons increases, while elbow velocity decoding
performance would worsen. Interestingly, we find that for
both shoulder and elbow velocity decoding, performance
increases as the number of shoulder neurons increases (figure
3). However, the slopes of the shoulder and elbow decoders
are significantly different (t test, p < 0.001). This suggest
that as additional shoulder neurons are added, the shoulder
decoder improves more than the elbow decoder, implying
that the functional specificity of stimulation effects conveys
some information about decoding performance in the cells.

There are several factors that may explain why both
shoulder and elbow decoding performance improves with
the number of shoulder neurons. First, the intersegmental
dynamics of the limb imply that movements of the elbow will
also create torques at the shoulder, and similarly, shoulder
movements will create elbow torques if the elbow angle
is maintained [5]. Thus, shoulder neurons may be highly
sensitive to elbow movements because they create torques
at the shoulder. Another possibility is that cells on elbow
electrodes are simply less predictive by chance alone. There
are a total of 7 units classified as elbow cells, so we are
almost certainly under sampling the true distribution of units
on electrodes that evoke elbow movements.

IV. DISCUSSION

In this paper, we have shown that decoding performance
from units on electrodes with stimulation effects is better
than decoding performance from units on electrodes without
stimulation effects. We suggest that at least some of this
improvement may arise because the evoked movements from
ICMS on a given electrode reveal information about the tun-
ing properties of the units we record through that electrode.

One limitation of the present study, however, is that these
results are based on data obtained from one monkey over
a relatively short span of time. In future work, we plan to
recapitulate the present findings in a second animal, while
also considering how the relationship between ICMS and
decoding performance changes over time. Lastly, we would
like to more systematically consider the relationship between
decoding performance and stimulation threshold. That is,
do electrodes with the lowest stimulation thresholds contain
units with the best decoding performance?

A. Relevance for a clinical neuroprosthesis

Performing our ICMS experiment, however, would be
difficult in a person with severe motor disability receiving a
neural prosthesis as the patient likely has either spinal cord
damage, or an amputation. In this scenario, other techniques
could be employed to determine the functional specificity of
each electrode. Chiefly, it has been shown that motor cortex
is active during imagined movements [9]. Thus, the response
properties of units may be revealed by instructing the patient
to imagine making various types of arm movements.
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