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Abstract— Clinical evidence indicates that a third of patients
with epilepsy are refractory to anti-epileptic drug treatment.
For some of these patients better seizure control can be achieved
by surgical treatment in which the seizure focus is localised and
resected while avoiding injury to crucial cortical tissues.

In this paper, non-seizure (interictal) epoch of electrographic
recording was used to calculate the functional synchrony
between different cortical regions. This synchrony measure was
then used as the connectivity parameter in a computational
model of transitions to a seizure like state.

The seizure focus was localised using this model and the
surgical intervention procedure was simulated. It was shown
that the in silico removal of a subset of seizure focus can
decrease the likelihood of a seizure in the model. The in silico
results were also compared with the clinical outcomes and a
convincing agreement was shown for five out of six patients;
sixth being a counter-example.

These methods may aid in the identification of the seizure
onset zone using the interictal electrographic data. Moreover, it
may facilitate neurosurgeons to investigate alternative cortical
tissues to operate on if the seizure focus cannot be operated.

I. INTRODUCTION

The World Health Organisation reports that approxi-
mately 50 million people have epilepsy and more than
50% of such patients have localisation related epilepsy (i.e.,
there is thought to be a focally abnormal area leading to
seizures). Unfortunately, for 30% of these patients uncon-
trolled seizures prevail even after maximal pharmacological
therapy using anti-epileptic drugs (see, e.g., [1], [2]). Often
these medically intractable patients undergo surgery where
the abnormal ‘focus’ is resected to achieve better seizure
control.

In order to accurately delineate the seizure onset zone
(and consequently the abnormal ‘focus’), clinicians mostly
rely on electrocorticography (ECoG) recordings of seizure
(ictal) activity. This requires enough seizures to be captured
(typically between 3 to 5) during the recording period. Since
seizures do not always occur frequently, this often requires a
long hospitalization time, sometimes with invasive electrodes
placed on the patient’s cortex which involves substantial
risk, discomfort and cost. Studies by [3], [4] and [5] show
that non-seizure interictal EEG contains relevant information
about the location of the epileptic brain area. However,
these techniques for aiding seizure focus delineation are not
routinely used clinically. Furthermore, these measures are not
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typically used to give a prediction of whether the surgical
outcome will be successful.

Mathematical models allow an exciting opportunity to
make predictions, based on the model dynamics, when using
certain parameter values. Changes in these parameter values
have been shown to be capable of inducing seizure-like
dynamics in these models [6], [7], [8]. Similarly, it should
therefore be possible to prevent (or reduce the likelihood of)
seizures through alterations to parameters too. In previous
studies, the connection strengths between different brain
areas have been considered to be model parameters [9],
[10], though those studies did not investigate the impact of
removing connections with a view to simulating the impact
of surgery. [11], [12] have investigated the impact of lesions
using a model in conjunction with cortical connectivity,
however, those studies were not with application to epilepsy.

In this study we infer model connectivity parameters from
the clinically obtained ECoG data of epileptic patients. Using
a model capable of transiting to a seizure-like state we first
predict that nodes which transit to a seizure-like state are
located in the clinically determined seizure focus. Secondly,
we hypothesise that the removal of these nodes will lead to
a greater reduction of seizures than the removal of random
nodes. Ultimately, we propose the use of the model for
prediction of the likelihood of surgical success.

II. METHODS
A. ECoG data and Preprocessing

We investigated interictal ECoG data of 6 patients with
intractable localised epilepsy (all data was collected confirm-
ing to ethical guidelines). These patients had undergone in-
tracranial investigation using intracortical electrodes (depth)
and subdural surface electrodes (grid). In each case, 1-hour
segment of data, at least 24 hours separated from seizure,
were examined. The data was band-pass filtered between 4
and 30 Hz, and each ECoG signal was then normalised (mean
subtracted and divided by standard deviation). A common
reference was used for data analysis. The reference electrode
in each case was located far from the area of recording. No
further pre-processing was performed; the channels were not
selected based on any pre-existing knowledge, except that
clearly dysfunctional channels were discarded.

To infer the functional synchrony between different corti-
cal regions, pairwise Pearson correlation coefficient between
the ECoG signals were computed and its absolute value
was taken. In the temporal correlation analysis of ictal and
interictal ECoG data, [13], [14] suggests that linear measures
perform similar to nonlinear measures. Thus for the sake
of conciseness, we limit ourselves to linear measure instead
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Fig. 1. I. Deterministic dynamics Phase plane plot (a) and bifurcation
diagram (b) showing bistability of the model. Different initial condition
results in either a fixed point state (black) or an oscillating state (red) which
are separated by an unstable limit cycle (blue). II. Stochastic dynamics
Model dynamics & escape time for one of the channels when model
parameters are inferred from the clinical interictal ECoG recordings.

of more sophisticated measures. Moreover, our results will
also suggest that linear measures suffice for our purposes.
The ECoG signal was first segmented in non-overlapping
consecutive segments of 5s, in total 720 segments per 1-
hour ECoG signal. The functional synchrony was calculated
for each 5s segments and the average value was obtained
for that 1 hour ECoG signal. These methods were described
in detail elsewhere [4]. This gives a functional connectivity
matrix M.

B. Model

To investigate the role of network topology in seizure
initiation, [9], [15] suggested a mathematical model which
can display focal onset of episodes of high-amplitude oscilla-
tions. These oscillations can be identified with seizure. This
model hypothesises seizure initiation to be a noise driven
process in a bistable system. Bistability means the model
can exhibit coexisting normal (non-seizure) and abnormal
(seizure) dynamics. Our implementation of this model con-
siders the cortex under each ECoG electrode to be divided
into discrete set of regions with bidirectional connectivity.
Individually, each region is modelled to be bistable, which
is then extended to multiple regions depending on the number
of ECoG electrodes specific to each patient, with a sampling
frequency of at least 250Hz. The resulting dynamics of
seizure initiation are governed by a stochastic differential
equation as follows:

dz j(t) =

(
f (z j)+β ∑

k 6= j
Mk j(zk− z j)

)
dt +αdw(t), (1)

where

f (z j) = (λ −1+ iω)z j +2z j|z j|2− z j|z j|4,

and ω is the parameter which controls frequency of oscil-
lation; λ determines the possible attractor of the system; β

determines the coupling strength of cortico-cortical connec-
tivity; M is the aforementioned subject-specific connectivity
matrix; w(t) is Laplace distributed random noise, with zero
mean and standard deviation scaled by α . Model solu-
tions were computed numerically using a fixed step Euler-
Maruyama solver in MATLAB.

Bistability in this model in the deterministic dynamics
(i.e. where α = 0) depends on the parameter λ , shown in
figure 1 (upper right panel) which is in accordance with [9].
Parameters are chosen such that all nodes in the model are
placed in the bistable regime. Thus, we use the parameter
values as (λ ,β ,α,ω) = (0.7,0.01,3.6,1). Including noise
causes the model to exhibit occasional transitions between
the two states. The simulated model output for one of the
ECoG electrodes is shown in figure 1 (lower panel).

C. Escape time and in silico seizure onset zone
We investigate the phenomenon of seizure initiation in the

model, with an objective of reducing its likelihood. Let E :=
{E1,E2 · · ·EN} and N is the number of surface electrodes.
Seizure initiation of a node Ei can be quantified using its
escape time, τEi , which is defined as follows:

τEi := min
{

t > 0 | xEi(t) ∈B(L),x j(0) ∈B(F)∀ j
}

, (2)

where xEi is the trajectory of ith node; B(F) and B(L) are
the basin of attraction of the fixed point (non-seizure) state
and the oscillating (seizure) state respectively.

Hypothesising that the nodes with minimum escape time
should form the seizure focus, we define the seizure onset
zone in this modelling framework as follows:

SK = argmin{τ(A) | A ∈P(EK)} , (3)

where SK is the set of nodes forming the seizure onset zone;
τ(A) is the mean escape time of nodes whose labels are
in A; P(EK) is the collection of subset of E containing
exactly K elements. In this paper, to find the number of nodes
comprising the seizure onset zone, we calculate K as follows:

1) The model being stochastic was simulated with
2000 different noise vectors and mean escape
time was calculated for each channel, i.e., Ti =
{τEi(m) | m = 1,2, · · ·2000} for i = 1,2, · · ·N.

2) p-values were calculated using two sample t-test be-
tween Ti and min{(∑Ti/|Ti|) | i = 1 · · ·N} to obtain
P= {pi | i = 1,2 · · ·N}.

3) K was calculated as the cardinality of
{p | p ∈ P & p < 0.1%}.

The surgical intervention procedure has been simulated
in this mathematical model of epileptic cortex. A node Ep
can be resected in silico by setting Mpi = Mip = 0 with i =
1,2 · · ·N in the connection parameter M of the model. This
process isolates the cortical region, thus inhibiting it from
contributing in the overall dynamics of the network topology.

III. RESULTS
In this section, we describe the results obtained after

analysing the non-seizure intracranial ECoG data.
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τ̄pre = 245.9s
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τ̄pre = 83.8s τ̄post = 110.2s
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τ̄rand = 316.4s

τ̄rand = 255.2s
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τ̄rand = 291.9sτ̄pre = 257.8s τ̄post = 329.4s

Fig. 2. Case I-V (for five patients) show the seizure onset zone localised using the mathematical model of epileptic cortex correspond with the clinically
determined seizure focus. In each case the first two figures show the in silico seizure onset zone (in green) and clinically determined seizure foci (in grey)
respectively. The histograms represent the mean escape time of all the nodes in the following cases: (i) prior to surgical resection of abnormal nodes (in
green), τ̄pre (ii) after surgical resection of abnormal nodes (in red), τ̄post (iii) after random removal of nodes (in blue) averaged over 30 instances, τ̄rand

A. In silico seizure localisation and simulating surgical
intervention

We delineate the seizure onset zone, SK , in silico for all
the six patients. Using the methods described in section II,
we calculate K and find the set of nodes which satisfy (3).
These nodes have been shown in green in the first column
of Fig. 2 for five patients and in Fig. 3 for the sixth patient.

In silico surgical simulations were performed to ascertain
that the nodes in SK are more likely to go into seizure state
as compared to other nodes. Figure 2 shows the relative
shift between the histogram of the mean escape time prior to
surgical intervention of SK (in green) and after its surgical
intervention (in red). This indicates that after the (simulated)
surgical resection it takes more time for all the nodes to
go into the seizure state. Finally, to verify if this result
is consistent, 30 sets chosen randomly from PEK were
resected. It is evident that the shift in the histogram shown
in red is still larger than that in blue. Therefore, these results
suggest that the elements in SK are the optimally delineated
seizure focus which is also evident from τ̄pre < τ̄rand < τ̄post.

B. Correlation with clinical results

The second column in figure 2 shows the seizure onset
areas, localised by trained electroencephalographers from
seizure data (blinded to the results of this analysis) marked
in grey. With the exception of patient 6, figure 3, the in silico
seizure onset zone either overlaps or clusters around the same
cortical region as determined clinically in all patients.

In the case of patient 6 (figure 3) some depth electrodes
were also implanted. By analysing those depth electrodes, it
became clear that seizures actually started deep inside the
brain, and then propagated towards the centre of the grid.
Thus there is an offset between the clinically obtained seizure
onset zone and in silico seizure focus. This case may be
considered as a counterexample of the analysis presented. In
future, we will investigate cases of this nature on a more
fundamental basis. Despite this, the regions which were
identified by our method with shorter escape times are all
located near the centre of the grid. It is indeed possible that
resection of these surface areas may have led to a reduction
of seizures both in silico and in vivo.
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Fig. 3. Case VI : Counter-example. In this subject both grid and depth
electrodes were used. Clinically, the seizure onset zone was found to be at
the depth electrode. However, the in silico seizure focus was found to be at
the center of the grid.

C. Outlook: clinical application

The methods presented above may be utilised in cases
where seizure focus is in the eloquent cortex [16]. Since the
eloquent cortex can not be operated, we suggest an investiga-
tive method of iterative in silico resection. This method may
aid neurosurgeons in locating potential alternative cortical
locations where surgery may be performed.

In the first iteration of this procedure, few nodes which
do not form a part of eloquent cortex but have low values of
mean escape time are resected. This resection would change
the dynamics of remaining set of nodes whose mean escape
time should be recalculated. The nodes with low mean escape
time, not forming a part of the eloquent cortex, should then
be delineated and resected again. With every iteration this
process will result into a set of nodes, outside the eloquent
cortex, whose resection will cause maximal seizure reduction
in the model.

IV. DISCUSSIONS

In this study we have developed in silico methods using
only the non-seizure ECoG epochs to delineate the seizure
onset zone in a mathematical model of an epileptic cortex.
We calculated the functional connectivity between different
cortical regions and used it in the model proposed by [9], [15]
to investigate the dynamics leading to seizure initiation. This
model has previously been used to highlight the importance
of connectivity between brain areas in the context of epilepsy
[10]. We showed that the change in mean escape time
provides a quantitative measure to elucidate the effect of
seizure reduction when a node is resected in silico.

An increase in functional synchrony leads to a stronger
effective input to the model. This causes the dynamics of
the model to cross the basin of the attractor more frequently,
and hence seizures are more frequent. The conjuncture of
the computational model and functional synchrony, provides
an interesting method to simulate the surgical procedure by
varying the parameters in the model. Therefore, this may be
used in prediction of the likelihood of a surgical success.

The methods presented here may aid clinicians to ef-
fectively use both ictal and interictal epochs of EEG to
delineate the seizure focus. Moreover, we have suggested a
procedure of iterative in silico resection that may be helpful

to neurosurgeons to locate alternate cortical regions, which
may be further be investigated for surgery if the seizure focus
is found to be in the eloquent cortex. However, it remains
for clinical/experimental results to validate this method.

We have also shown a case for which this in silico method
fails and thus should be used carefully. In particular we found
that functional synchrony at the grid electrodes do not allow
us to infer the depth at which seizures are generated; we
can obtain that information only from the depth electrodes.
We aim to expand these in silico methods to cases where
depth electrodes are used and the seizure onset zone lies
deep inside the brain.
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