
  

  

Abstract— Poor sleep quality is associated with chronic 
diseases, weight increase and cognitive dysfunction. Home 
monitoring solutions offer the possibility of offering tailored 
sleep coaching interventions. There are several new 
commercially available devices for tracking sleep, and although 
they have been tested in sleep laboratories, little is known about 
the errors associated with the use in the home. To address this 
issue we performed a study in which we compared the sleep 
monitoring data from two commercially available systems: 
Fitbit One and Beddit Pro. We studied 23 subjects using both 
systems over a week each and analyzed the degree of agreement 
for different aspects of sleep. The results suggest the need for 
individual-tailoring of the estimation process. Not only do these 
models address improved accuracy of sleep quality estimates, 
but they also provide a framework for the representation and 
harmonization for monitoring data across studies. 

I. INTRODUCTION 

Sleep is an important factor in our health and wellbeing. 
Lack of sleep has been related to obesity, diabetes, heart 
diseases, dementia, and depression [1]. In 2008 a report from 
the Centers for Disease Control and Prevention warned that 
11.3 % of Americans reported not having sufficient sleep or 
rest during the last 30 days [2]. An important step in 
improving sleep is a reliable assessment. Polysomnography 
(PSG) is considered the de facto gold standard and the 
primary tool for sleep monitoring [3]. Among its 
disadvantages are the high cost, its intrusiveness, time 
consumed and the disturbance of the usual bed environment 
[4]. To overcome some of these disadvantages, new methods 
have been developed for monitoring sleep in the home with 
approaches including passive infrared sensors [5], pressure 
sensitive mats, EEG electrode headbands, and wrist 
actigraphs. The cost of these systems have been much 
reduced in recent years, making them available for routine 
consumer use. However, the accuracies of these systems 
vary according to the context. Some are more intrusive than 
others and require user adherence to work properly. 
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Many of the new sleep devices designed for consumer 
sleep tracking use accelerometer technology (e.g., Fitbit 
One, Traxmeet, Lark, WakeMate, Jawbone UP, 
SleepTracker). There are applications (iSleep, SleepCycle, 
and SleepRate among others) to estimate sleep time and 
quality using cell phones’ accelerometers. MyZeo (out of 
business in 2013) used both actigraphy and electro-
encephalography (EEG) to estimate sleep parameters. 
Additionally, Beddit Pro [6], uses a fully unobtrusive 
piezoelectric sensor strip (placed under the bed sheets) in 
conjunction with ballistocardiography (BCG) analysis to 
estimate sleep parameters by combining heart rate (HR), 
breathing and movement. Our lab has tested Beddit Pro, 
Fitbit One, Traxmeet, Firstbeat devices and self-reporting for 
comparative analysis to characterize the accuracy of the 
different types of sleep monitoring approaches. Previous 
studies have found that Fitbit overestimated the population 
average of the total sleep time (TST) and sleep efficiency 
(SE) when compared to the laboratory standard of PSG [7]. 
Beddit has proven to provide accurate estimates of heart rate 
(HR) and breathing [8] that together can be used to estimate 
sleep parameters [9]. The present study was conducted to 
examine sleep assessment by Fitbit in comparison to Beddit 
while exploring the possibility of tailoring the estimation 
technique for individual participants.  

II. MATERIAL AND METHODS 

A. Subjects 
The study sample consisted of 23 healthy subjects (18 

males and 5 females). Subjects’ age ranged from 21 to 31 
years. They were recruited from the Tampere University of 
Technology in Finland by word of mouth and by 
advertisement in internal mailing lists. Inclusion criteria 
included age 18 - 65 years and good health. Participants who 
shared the bed with a partner, had a BMI > 28, or were 
pregnant were excluded from the trial. Additionally, those 
who were away from home during the study were removed 
from analysis. All volunteers agreed to participate in this 
research and signed a written informed consent. 

B. Protocol 
The trial had duration of 7 to 10 consecutive days. 

Participants were instructed to carry a Fitbit One (Fitbit Inc., 
CA, USA) in a pocket or on the wrist during the day and to 
wear it in a band on the wrist and activate the night mode 
when “they decided to go to sleep” and after watching 
television or reading. The Beddit Pro (Beddit, Espoo, 
Finland) sensor strip was installed directly under the bed 
sheets, and the set-top box next to the bed. This device does 
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not require any type of intervention from the user and it is 
programmed to record data during a specific timeframe. 
Participants were also fitted with a reference actigraph 
(Traxmeet, Helsinki, Finland) on the dominant hand, a 
Firstbeat Bodyguard 2 HR monitor (Firstbeat, Jyväskylä, 
Finland), and were instructed to fill a sleep and activity diary 
daily and a subjective sleep quality assessment questionnaire 
before and after the trial. In this paper we analyzed Fitbit and 
Beddit data to explore accuracy and inference issues. 
Remaining recordings were not taken into account in the 
current study. However, questionnaires were however used to 
better interpret the results.  

C. Data recording 
Fitbit One uses a 3-D Micro-Electro Mechanical System 

(MEMS) accelerometer. It has two modes: day mode and 
sleep mode. Sleep mode is enabled by pushing a button at the 
beginning and in the end of sleep. Using proprietary 
algorithms, it estimates steps, distance, climbed stairs, burned 
calories throughout the day, and sleep parameters when night 
mode is activated. The device also displays a growing flower 
graphic showing progress toward a daily target activity goal. 

Beddit Pro has four types of sensors: a temperature 
sensor, a microphone, a light sensor, and a piezoelectric 
sensor. The first three sensors are located in a set-top box, 
which is connected to the piezoelectric sensor by a cable. 
This force sensor is a flexible 4cm x 70cm x 0.4mm foil 
placed under the bed sheets. Beddit measures both body 
signal variables and environmental variables. Body signal 
variables include heart rate, sleep structure (light, REM, and 
deep sleep), stress, total sleep time (TST), and presence by 
using post-processing algorithms from the piezoelectric 
sensor (sampling frequency of 140 Hz, 16 bit). 
Environmental variables include temperature (every 5 min), 
noise (every 5 min) and light (every 5 min). 

Both systems, Beddit and Fitbit, compute a similar set of 
sleep variables detailed in their API documentation. Data 
were recorded and synchronized with the manufacturers’ 
servers using their software. Recorded data were downloaded 
from Beddit and Fitbit servers to a mash-up server W2E 
(Wellness Warehouse Engine) [11-13]. Finally, data were 
downloaded from the W2E for each of the participants for 
analysis. Data quality assessments and validations were 
performed visually: we selected nights where both Fitbit and 
Beddit data were within the expected limit and available 
simultaneously. 

TABLE I.  STANDARD VARIABLES AND THEIR CORRESPONDENCE IN 
FITBIT AND BEDDIT APIS. 

Variable API’s variable names 
Beddit- TST, minutes time_sleeping 
Beddit- SE, % sleep_efficiency 
Fitbit-TST, minutes minutesAsleep 
Fitbit-SE, %  summary.totalMinutesAsleep 

/fitbitsleep{p}.summary.totalTimeInBed*100 

Beddit- sleep stages, 
array 

sleep_stages 

Fitbit-NWAK, no. awakeningsCount 
Fitbit-SOL, minutes  minutesToFallAsleep 

D. Sleep parameters 
 Four basic sleep parameters were compared: Total 

Sleep Time (TST), Sleep Efficiency (SE), Sleep-Onset 
Latency (SOL), and number of awakenings (NWAK). TST 
is the total amount of time that the subject spent sleeping, SE 
is the number of minutes of sleep divided by the number of 
minutes in bed, SOL is the amount of time in minutes that is 
required to transit from full wakefulness to sleep, and 
NWAK is the number of times the person goes out of bed 
after the sleep onset and before the final awakening. 

Whereas TST and SE are available directly from both 
APIs, Beddit does not directly provide SOL and NWAK. 
Instead, it provides the sleep stages estimates in the form of 
an array of tags with their corresponding timestamp.  

Beddit distinguishes between A-away, W-wake, L-light, 
D-deep sleep, R-REM sleep and M-missing. SOL was 
computed as the time difference between the first W and the 
first L, D, or R tags. NWAK was computed as the number of 
times the letter A appears after the first L, D or R stages, and 
before the last L, D or R. Table 1 lists the sleep variables 
used in this paper and their corresponding variables in each 
of the manufacture’s APIs.  

E. Analysis 
Ideally, the two systems would yield the same data for a 
given subject and date. To examine this hypothesis we 
analyzed, for each subject, the sleep measures from Fitbit as 
a function of the measures from Beddit for TST, SE, SOL 
and NWAK. This choice was made since Beddit is more 
likely to provide more direct information regarding the 
participants in and out of bed transition.  

 

Figure 1.   Scatter plots representing (a) TST, (b) SE, (c) SOL and (d) 
NWAK as measured by Fitbit and Beddit for all subjects and all nights. 
Each night is indicated by a filled circle; the regression model is represented 
by solid lines and the ideal linear transformation (identity) is shown as 
dashed lines. 
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To assess the degree of agreement between the two 
systems we first computed a linear regression for all 
participants that recorded at least three nights. The 
coefficient of correlation and the coefficient of 
determination R2 were used to represent the degree of 
agreement between the two systems. We used two models 
for this comparison, one with the intercept set to zero (strong 
model) and the other estimated intercepts for each individual 
i (strong model).  The strong model,  f = b, in which a Fitbit 
feature f, is predicted by the corresponding Beddit feature b, 
is used to assess the ability to provide absolute estimates 
assuming that the two systems measure exactly the same 
features. The second model, with subject-dependent 
parameters,  f  = ci + di b, was used to estimate our ability to 
harmonize data from different devices with minimal 
measurement errors. Both models were evaluated by 
computing the root mean squared error (RMS) and the 
coefficient of determination (R2). The statistical analyses 
were performed using software packages MATLAB (version 
7.0; Mathworks, Natick, MA) and SPSS (Release 20.0.0; 
IBM Corp, Armonk, NY), respectively. 

 

 
Figure 2.  Scatterplots of Fibit and Beddit for TST for two subjects. Each 
point represents the Beddit and the Fitbit estimate for 1 night of data. The 
dashed line represents the diagonal line (perfect agreement) between the 
two measurements. The solid line represents the best-fit regression line. 

III. RESULTS 

A. Population Summary 
A total of twenty-three subjects, 5 women and 18 men 

(mean age 25.8 ± 2.9 years, height 172.2 ± 24.7 cm, mass 
74.3 ± 12.5 kg), participated in the trial. One subject was 
excluded from the study due to a device malfunction. A total 
of 138 nights were recorded. Average Beddit-TST time was 
469.9 (SD ±96.0) min, SE was 87.8% (SD ± 9.2%), SOL 
was 17.6 (SD ± 36.5) min, and NWAK was 0.97 (SD ± 1.18) 
times. Average Fitbit-measured TST was 461.6 (SD ±106.4) 
min, and SE was 90.2% (SD ± 7.7%), SOL was 17.7 (SD ± 
25.7) min, and NWAK was 14.7 (SD ± 10.7) times.  

Scatterplots and the associated linear regression for the 
estimates, of the four sleep parameters from all subjects and 
for all nights are shown in Figure 1. The linear model (Fitbit 
= A0 + A1*Beddit) was used to assess the agreement 
between the two systems.  The scatter plots as well as the 
analysis suggest very poor agreement between the systems 
due to significant variability. In particular, the coefficient of 
determination suggests that the Fitbit estimates accounted 

only for less that 30% of the variance. Fitbit appeared to 
overestimate SE, NWAK, and SOL. 

B. Individual Subjects  
Although the population averages suggest a poor 

agreement between the systems, it is possible that the 
correspondence for some individuals is acceptable.    To 
examine this hypothesis we performed a separate linear 
regression analysis for each participant. Examples of two 
scatterplots for two sample participants are shown in Fig. 2. 
The regression estimates for the participant on the left are 
excellent, while they are poor for the participant on the right, 
as demonstrated by the corresponding R2 values. The overall 
quality of the fit and the accuracy of the estimates for all 
participants and all four features was represented by R2 

computed for each participant. The distributions of R2 for 
each sleep parameter are shown in Fig. 3. These distributions 
are consistent with our hypothesis that the correspondence 
between the Fitbit and Beddit estimates are poor for some, 
but excellent for other participants.  Agreement for TST was 
high (R2 > 0.70) for twelve participants and not as good for 
the other sleep variables. 

 
Figure 3.  Distribution of R2 for (a) TST, (b) SE, (c) SOL, and (d) NWAK 
for the 2 parameter weak model. 

The conclusion from this analysis is that Fitbit may be 
useful for some subjects but not for others.  This raises a 
question of how to determine which people would benefit 
from the sleep estimates derived from the Fitbit system. One 
approach would be to calibrate each person intending to use 
the Fitbit device using a Beddit or similar system. This 
approach would, however be costly and cumbersome.  It 
would be significantly more convenient if it would be 
possible to estimate the validity of the Fitbit sleep estimates 
from the Fitbit data. To answer this question, we used a 
linear discriminant analysis of the Fitbit results. In 
particular, we examined whether a linear discriminant 
classifier can separate participants with low 2 0.75R <  from 
those with high 2 0.75R ≥ . The linear discriminant classifier 
was computed using three features: Average total sleep time, 
average sleep efficiency and a correlation between adjacent 
TST values in the sequence of adjacent nights. The 
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preliminary results of the computation are promising in that 
the classifier could correctly classify more than 81% of the 
participants with respect to the validity of the Fitbit 
estimates.  We note that these results are not conclusive 
because of the small number of participants in this study that 
prevented us to examine the generalizability of these results 
using cross-validation approaches.  

IV. DISCUSSION 
The primary aim of this research was to compare two 

consumer sleep monitoring devices, Fitbit and Beddit. The 
motivation for the study was related to the fact that the 
accelerometer-based systems are very affordable, and are 
already used by many for activity measurement and do not 
require any additional modifications to the environment. In 
contrast, Beddit is more expensive and requires an 
installation in the participant’s bed. When installed, the 
Beddit system is completely unobtrusive, whereas the Fitbit 
system requires the monitored individuals to signal their 
intention to sleep.  Each of these devices is sensitive to 
certain type of movements and sleep disturbances that may 
guide their deployment.  

The main outcome of this study is the finding that the 
accelerometer-based system (Fitbit) can be a useful device 
for assessment of relevant sleep parameters for a subset of 
the participants.  In particular, for approximately 50% of the 
participants the data from the Fitbit system can be used to 
provide a good approximation of the total sleep time 
obtained from the Beddit system. For the remaining 
individuals, however, the Fitbit estimates were not very 
useful since they were almost independent of the Beddit 
estimates. The fact that individual differences determine the 
validity of the data implies that the deployment of such 
accelerometer-based systems will require individual-
tailoring of the estimates. Finally, the results of the 
application of a linear classifier would suggest that it may be 
possible to use the Fitbit data to estimate the validity of the 
estimates. It is necessary to note, however, that the number 
of participants and the length of the present study are the 
limiting factors in interpretation of the results. 

V. CONCLUSION 
The key conclusion, based on the present study is that 

accelerometer-based devices may provide useful estimates 
of sleep parameters for a substantial subset of population. In 
order to utilize these data, it is necessary to model 
individuals and their behaviors.  These individually-tailored 
models can be then used to harmonize data across devices 
and individuals. 

These conclusions are subject to a number of limitations 
that include (a) the absence of a Beddit-PSG comparison, (b) 
a participant set comprising only young healthy adults, and 
(c) a small sample size. 

In the future we need to enhance this model-based 
approach to incorporate estimates of user behavior, such as 
adherence. To address this issue, it might be possible to 
develop accelerometer-based devices that would be more 
context-aware and provide information useful in estimating 

the sleep starting time. 
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